• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The evolution of firefly lights

by
June 25, 2024
in Biology
Reading Time: 3 mins read
0
Pyrocoelia analis
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The leading hypothesis for the origin of firefly lights has been overturned by a genomic analysis. It had been posited that the bright lights emitted by many species in the Lampyridae family of beetles—better known as fireflies—first evolved as a warning signal to predators, advertising the toxicity of fireflies, and were then repurposed as a mating signal. This explanation would account for why eggs, larvae, and pupae also glow. Ying Zhen and colleagues put the conventional wisdom to the test by compiling a family tree of fireflies and tracing the evolution of the chemical compounds that makes fireflies toxic: lucibufagins. The team collected fresh samples for 16 species of Lampyridae from diverse locations across China, along with two related species, which they analyzed along with preexisting collections and genetic data. In total, the authors compiled genomic level data from 41 species. For each species, the authors also looked for lucibufagins using liquid chromatography-mass spectrometry. The team were able to show that the lucibufagins are only found in one subfamily of fireflies, whereas bioluminescence is found widely across the entire family, strongly suggesting that the toxin evolved after the development of bioluminescence. So why did fireflies first begin to shine? The substrate of firefly bioluminescence, luciferin, has previously been shown to have antioxidant properties. Ying Zhen and colleagues found that firefly ancestors evolved and diversified during a historical period when atmospheric oxygen levels continued to rise from a historical low after the Toarcian Oceanic Anoxic Event. The authors also note that glowing millipedes are thought to initially evolved bioluminescence to cope with oxidative stress in hot, dry environments and suggest that perhaps the fireflies followed a similar path.

Pyrocoelia analis

Credit: Chengqi Zhu

The leading hypothesis for the origin of firefly lights has been overturned by a genomic analysis. It had been posited that the bright lights emitted by many species in the Lampyridae family of beetles—better known as fireflies—first evolved as a warning signal to predators, advertising the toxicity of fireflies, and were then repurposed as a mating signal. This explanation would account for why eggs, larvae, and pupae also glow. Ying Zhen and colleagues put the conventional wisdom to the test by compiling a family tree of fireflies and tracing the evolution of the chemical compounds that makes fireflies toxic: lucibufagins. The team collected fresh samples for 16 species of Lampyridae from diverse locations across China, along with two related species, which they analyzed along with preexisting collections and genetic data. In total, the authors compiled genomic level data from 41 species. For each species, the authors also looked for lucibufagins using liquid chromatography-mass spectrometry. The team were able to show that the lucibufagins are only found in one subfamily of fireflies, whereas bioluminescence is found widely across the entire family, strongly suggesting that the toxin evolved after the development of bioluminescence. So why did fireflies first begin to shine? The substrate of firefly bioluminescence, luciferin, has previously been shown to have antioxidant properties. Ying Zhen and colleagues found that firefly ancestors evolved and diversified during a historical period when atmospheric oxygen levels continued to rise from a historical low after the Toarcian Oceanic Anoxic Event. The authors also note that glowing millipedes are thought to initially evolved bioluminescence to cope with oxidative stress in hot, dry environments and suggest that perhaps the fireflies followed a similar path.



Journal

PNAS Nexus

Article Title

Firefly toxin lucibufagins evolved after the origin of bioluminescence

Article Publication Date

25-Jun-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.