• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How cells boost gene expression

by
June 24, 2024
in Biology
Reading Time: 5 mins read
0
Professor Heike Krebber and researchers Dr Ivo Coban (left) and Jan-Philipp Lamping (right)
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The function of non-coding RNA in the cell has long been a mystery to researchers. Unlike coding RNA, non-coding RNA does not produce proteins – yet it exists in large quantities. A research team from the University of Göttingen has now discovered an important function of antisense RNA (asRNA): the researchers found that asRNA acts as a “superhighway” in cell transport and thus accelerates gene expression. The results were published in Nature.

Professor Heike Krebber and researchers Dr Ivo Coban (left) and Jan-Philipp Lamping (right)

Credit: H Krebber

The function of non-coding RNA in the cell has long been a mystery to researchers. Unlike coding RNA, non-coding RNA does not produce proteins – yet it exists in large quantities. A research team from the University of Göttingen has now discovered an important function of antisense RNA (asRNA): the researchers found that asRNA acts as a “superhighway” in cell transport and thus accelerates gene expression. The results were published in Nature.

 

RNA (ribonucleic acid) plays a central role in the translation of DNA information into proteins. There are different types of RNA, one of which is known as messenger RNA (mRNA). Messenger RNA is a type of coding RNA and its job is to transmit the building instructions for proteins from the DNA in the cell nucleus out into the cytoplasm, where other cell components translate them into proteins. In addition to coding RNA, there are large quantities of non-coding RNA. Much of the non-coding RNA is produced as the complementary strand to mRNA and is therefore referred to as antisense RNA (asRNA). Their function has been unclear for a long time. “It seemed unbelievable to me that a cell would produce RNAs without a purpose,” says Professor Heike Krebber from Göttingen University’s Institute of Microbiology and Genetics. “This is contrary to nature.”

 

Krebber’s team discovered that asRNA combines with mRNA, which is then preferentially transported from the cell nucleus into the cytoplasm. This means that the cell translates the information from the mRNA into proteins faster than would be the case without asRNA. Therefore, asRNA serves as a “booster” for gene expression. This is necessary for the cell in many situations, for example when confronted with harmful environmental conditions or stress. This work is the next step from the team’s earlier basic research, also published in Nature, which showed that mRNAs activated under stress are no longer subject to quality control.

 

The new research findings about asRNAs solve the long-standing question of why the cell sometimes produces large quantities of asRNA. “In biology, this is particularly striking because the cell expends a lot of energy on asRNA production,” explains Krebber. The mechanism that has now been discovered explains how cells can react abruptly to external influences to produce the necessary proteins immediately and in large quantities in order to adapt to environmental conditions or, for example, to enter a certain stage of development. “This new understanding brings asRNAs into the focus of the question of how diseases develop and how they can be combated,” says Krebber.

 

Original publication: Coban, I. et al. dsRNA formation leads to preferential nuclear export and gene expression. Nature 2024. Doi: 10.1038/s41586-024-07576-w

 

 

Contact:

Professor Heike Krebber

University of Göttingen

Göttingen Center for Molecular Biosciences GZMB, and

Institute of Microbiology and Genetics – Department of Molecular Genetics

Grisebachstraße 8, 37077 Göttingen

Telephone: (0551) 39-23801

Email: [email protected]

www.img.bio.uni-goettingen.de/Krebber-lab_homepage.html  

The function of non-coding RNA in the cell has long been a mystery to researchers. Unlike coding RNA, non-coding RNA does not produce proteins – yet it exists in large quantities. A research team from the University of Göttingen has now discovered an important function of antisense RNA (asRNA): the researchers found that asRNA acts as a “superhighway” in cell transport and thus accelerates gene expression. The results were published in Nature.

 

RNA (ribonucleic acid) plays a central role in the translation of DNA information into proteins. There are different types of RNA, one of which is known as messenger RNA (mRNA). Messenger RNA is a type of coding RNA and its job is to transmit the building instructions for proteins from the DNA in the cell nucleus out into the cytoplasm, where other cell components translate them into proteins. In addition to coding RNA, there are large quantities of non-coding RNA. Much of the non-coding RNA is produced as the complementary strand to mRNA and is therefore referred to as antisense RNA (asRNA). Their function has been unclear for a long time. “It seemed unbelievable to me that a cell would produce RNAs without a purpose,” says Professor Heike Krebber from Göttingen University’s Institute of Microbiology and Genetics. “This is contrary to nature.”

 

Krebber’s team discovered that asRNA combines with mRNA, which is then preferentially transported from the cell nucleus into the cytoplasm. This means that the cell translates the information from the mRNA into proteins faster than would be the case without asRNA. Therefore, asRNA serves as a “booster” for gene expression. This is necessary for the cell in many situations, for example when confronted with harmful environmental conditions or stress. This work is the next step from the team’s earlier basic research, also published in Nature, which showed that mRNAs activated under stress are no longer subject to quality control.

 

The new research findings about asRNAs solve the long-standing question of why the cell sometimes produces large quantities of asRNA. “In biology, this is particularly striking because the cell expends a lot of energy on asRNA production,” explains Krebber. The mechanism that has now been discovered explains how cells can react abruptly to external influences to produce the necessary proteins immediately and in large quantities in order to adapt to environmental conditions or, for example, to enter a certain stage of development. “This new understanding brings asRNAs into the focus of the question of how diseases develop and how they can be combated,” says Krebber.

 

Original publication: Coban, I. et al. dsRNA formation leads to preferential nuclear export and gene expression. Nature 2024. Doi: 10.1038/s41586-024-07576-w

 

 

Contact:

Professor Heike Krebber

University of Göttingen

Göttingen Center for Molecular Biosciences GZMB, and

Institute of Microbiology and Genetics – Department of Molecular Genetics

Grisebachstraße 8, 37077 Göttingen

Telephone: (0551) 39-23801

Email: [email protected]

www.img.bio.uni-goettingen.de/Krebber-lab_homepage.html  

 



Journal

Nature

DOI

10.1038/s41586-024-07576-w

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

dsRNA formation leads to preferential nuclear export and gene expression

Article Publication Date

19-Jun-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring Splicing Patterns in Medicinal Rheum Palmatum

October 5, 2025
NR2E1 Gene Methylation Influences Beef Cattle Adipocytes

NR2E1 Gene Methylation Influences Beef Cattle Adipocytes

October 5, 2025

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

October 4, 2025

Revolutionary Graph Network Enhances Protein Interaction Prediction

October 4, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Transforming Cell Clusters with Differentiable Programming

Racial Disparities in Anticoagulant Use for Atrial Fibrillation

ICU Nurses’ Perspectives on End-of-Life Care

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.