• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Gonadal function in male mice disrupted by prenatal risk factors

Bioengineer by Bioengineer
June 14, 2024
in Health
Reading Time: 3 mins read
0
Researcher image
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have consistently shown that prenatal exposure to Di (2-ethyhexyl) phthalate harms the reproductive system in male mice and causes fertility defects. In a new study, scientists from the University of Illinois Urbana-Champaign have shown that the combination of DEHP and a high-fat diet in pregnant mice can cause more damage to pups than each factor alone. 

Researcher image

Credit: Fred Zwicky

Researchers have consistently shown that prenatal exposure to Di (2-ethyhexyl) phthalate harms the reproductive system in male mice and causes fertility defects. In a new study, scientists from the University of Illinois Urbana-Champaign have shown that the combination of DEHP and a high-fat diet in pregnant mice can cause more damage to pups than each factor alone. 

Male reproductive disorders are a growing issue due to the global decrease in sperm count and quality. Concerningly, chemicals like DEHP, which can be found in food storage containers, pharmaceuticals, and building materials, have been found to be one of the contributing factors. The toxicity of DEHP is due to its ability to mimic the hormones in our bodies, leading to long-term effects on health. 

“The scientific community is aware of the fact that the current generation of men produce half as much sperm compared to the previous one,” said CheMyong Jay Ko (EIRH), a professor of veterinary medicine. “Although it is shocking, not much attention is paid to understanding the causes.”

The researchers used the Barker hypothesis as a guiding principle for their study. Proposed by the British physician and epidemiologist David Barker, the hypothesis argued that the nine months in utero are one of the most critical periods in a person’s life and can shape their future health trajectories. 

“The Barker hypothesis primarily focuses on nutrition and we wanted to test whether the mother’s diet could change the health of the next generation,” Ko said. “Additionally, unlike the previous generation, we are constantly exposed to chemicals like DEHP, which can alter how our bodies function. We wanted to ask whether the exposure to both these factors can cause growing babies to have lesser functioning reproductive systems.”

In the past, both the Ko lab and other research groups have shown that prenatal exposure to DEHP decreases testosterone levels and causes fertility defects in male mice. Additionally, scientists have shown that maternal high-fat diet can also decrease sperm counts in male offspring. However, the effects of both together had not been studied. 

The researchers used four groups of pregnant mice; one was a control and the other three were either exposed to DEHP, or a high-fat diet, or a combination of the two. They then followed each litter, which contained an average of 6 male and 6 female pups. 

“Surprisingly, we found that a high-fat diet had a more damaging effect on the male reproductive systems compared to DEHP alone and the pups born from mothers who had been treated with both had the worst outcomes,” Ko said. 

The researchers measured the weight of the body and different reproductive organs in pups during different stages of growth and puberty. They found that although the body weight of pups born from moms on a high-fat diet alone or in combination with DEHP was higher than the other pups, the weight of the reproductive organs was lower. They also found that these mice produced less sperm and had lower testosterone levels. By staining the tissues, the researchers found that the reproductive organs had abnormal cells, which were contributing to the gonadal dysfunction. 

“In our studies, we used these mice as a model. Although we need to confirm these results in humans, this study should serve as a warning to our generation that we need to be careful about our environment and diet during pregnancy,” Ko said. 

The study “Prenatal exposure to Di(2-ethylhexyl) phthalate and high-fat diet synergistically disrupts gonadal function in male mice” was published in Biology of Reproduction and can be found at https://doi.org/10.1093/biolre/ioae029. The work was funded by the National Institute of Environmental Health Sciences.

 



Journal

Biology of Reproduction

DOI

10.1093/biolre/ioae029

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Prenatal exposure to Di(2-ethylhexyl) phthalate and high-fat diet synergistically disrupts gonadal function in male mice

Article Publication Date

24-May-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.