• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Quantum dots and metasurfaces: Deep connections in the nano world

Bioengineer by Bioengineer
June 12, 2024
in Science News
Reading Time: 3 mins read
0
Schematic diagram of the fabrication of a luminescence-controlled metasurface using the nanoimprint lithography process
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In relationships, sharing closer spaces naturally deepens the connection as bonds form and strengthen through increasing shared memories. This principle applies not only to human interactions but also to engineering. Recently, an intriguing study was published demonstrating the use of quantum dots to create metasurfaces, enabling two objects to exist in the same space.

Schematic diagram of the fabrication of a luminescence-controlled metasurface using the nanoimprint lithography process

Credit: POSTECH

In relationships, sharing closer spaces naturally deepens the connection as bonds form and strengthen through increasing shared memories. This principle applies not only to human interactions but also to engineering. Recently, an intriguing study was published demonstrating the use of quantum dots to create metasurfaces, enabling two objects to exist in the same space.

 

Professor Junsuk Rho from the Department of Mechanical Engineering, the Department of Chemical Engineering, and the Department of Electrical Engineering, PhD candidates Minsu Jeong, Byoungsu Ko, and Jaekyung Kim from the Department of Mechanical Engineering, and Chunghwan Jung, a PhD candidate, from the Department of Chemical Engineering at Pohang University of Science and Technology (POSTECH) employed Nanoimprint Lithography (NIL) to fabricate metasurfaces embedded with quantum dots, enhancing their luminescence efficiency. Their research was recently published in the online edition of Nano Letters, an international journal in nanotechnology.

 

NIL, a process for creating optical metasurfaces, utilizes patterned stamps to quickly transfer intricate patterns at the nanometer (nm) scale. This method offers cost advantages over electron beam lithography and other processes and has the advantage of enabling the creation of metasurfaces using materials that are not available in conventional processes.

 

Metasurfaces have recently been the focus of extensive research for their ability to control the polarization and emission direction of light from quantum dots. Quantum dots, which are nanoscale semiconductor particles, are highly efficient light emitters capable of emitting light at precise wavelengths. This makes them widely used in applications such as QLEDs and quantum computing. However, conventional processes cannot embed quantum dots within metasurfaces. As a result, research has often involved fabricating metasurfaces and quantum dots separately and then combining them, which imposes limitations on controlling the luminescence of the quantum dots.

 

In this study, the researchers integrated quantum dots with titanium dioxide (TiO2), a material used in the NIL process, to create a metasurface. Unlike conventional methods, which involve separately fabricating the metasurface and quantum dots before combining them, this approach embeds the quantum dots directly within the metasurface during its creation.

 

The resulting metasurface enhances the proportion of photons emitted from the quantum dots that couple with the resonance mode of the metasurface. This advancement allows for more effective control over the specific direction of light emitted from the quantum dots compared to previous methods.

 

Experiments demonstrated that the more photons emitted from the quantum dots that were coupled to the resonant modes of the metasurface, the higher the luminescence efficiency. The team’s metasurface achieved up to 25 times greater luminescence efficiency compared to a simple coating of quantum dots.

 

Professor Junsuk Rho of POSTECH who led the research stated, “The use of luminescence-controlled metasurfaces will enable sharper, brighter displays and more precise, sensitive biosensing.” He added, “Further research will allow us to control luminescence more effectively, leading to advances in areas such as nano-optical sensors, optoelectronic devices, and quantum dot displays.”

 

The research was conducted with support from POSCO N.EX.T IMPACT, the Samsung Future Technology Incubation Program, and the Mid-Career Researcher Program of the Ministry of Science and ICT and the National Research Foundation of Korea.



Journal

Nano Letters

DOI

10.1021/acs.nanolett.4c00871

Article Title

Printable Light-Emitting Metasurfaces with Enhanced Directional Photoluminescence

Article Publication Date

15-May-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Broad T Cell Response Against Omicron Spike Variants

October 6, 2025

HUWE1 Loss Drives Stemness, Drug Resistance in CRC

October 6, 2025

Accounting for Albedo in Carbon Market Protocols

October 6, 2025

Designing Relationships in Intrinsically Disordered Proteins

October 6, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Broad T Cell Response Against Omicron Spike Variants

HUWE1 Loss Drives Stemness, Drug Resistance in CRC

Accounting for Albedo in Carbon Market Protocols

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.