• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Toward testing the quantum behavior of gravity: A photonic quantum simulation

Bioengineer by Bioengineer
June 5, 2024
in Chemistry
Reading Time: 3 mins read
0
Artistic representation of the implemented photonic experiment in which entanglement between the polarizations of single photons is mediated by the independent degree of freedom of the photon path.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a groundbreaking development at the intersection of quantum mechanics and general relativity, researchers have made significant strides toward unraveling the mysteries of quantum gravity. This work sheds new light on future experiments that hold promise for resolving one of the most fundamental enigmas in modern physics: the reconciliation of Einstein’s theory of gravity with the principles of quantum mechanics.

Artistic representation of the implemented photonic experiment in which entanglement between the polarizations of single photons is mediated by the independent degree of freedom of the photon path.

Credit: Federico Alfano

In a groundbreaking development at the intersection of quantum mechanics and general relativity, researchers have made significant strides toward unraveling the mysteries of quantum gravity. This work sheds new light on future experiments that hold promise for resolving one of the most fundamental enigmas in modern physics: the reconciliation of Einstein’s theory of gravity with the principles of quantum mechanics.

The longstanding challenge of unifying these two pillars of physics has tantalized scientists for decades, spawning various theoretical frameworks such as string theory and loop quantum gravity. However, without experimental verification, these theories remain speculative.

How to test the quantum nature of gravity?  Tangible means to probe the quantum behavior of the gravitational field were proposed within the last decade (by Marletto and Vedral, and by Bose et al.), based on the  concept of “gravity-mediated entanglement.”

In a recent study published in Advanced Photonics Nexus, an international team of researchers achieved a significant goal in preparation for future experiments in the quest to unify quantum mechanics and general relativity. Their work leverages cutting-edge tools and techniques from quantum information theory and quantum optics to demonstrate the principles of gravity-mediated entanglement using particles of light, i.e., photons.

The experiment involves the interaction between photons to mimic the gravitational field’s effect on quantum particles. Remarkably, some properties of the photons, despite never directly interacting, become entangled, showcasing a quintessential quantum phenomenon: nonlocality. This entanglement is mediated by another independent photonic property and mirrors the hypothesized behavior of gravity-mediated entanglement, providing crucial insights into the quantum nature of gravity.

Importantly, the study also addresses the challenge of detecting the entanglement generated in these experiments. By elucidating the constraints and noise sources inherent in such experiments, the researchers pave the way for clarifying concepts and tools to be used for future experiments aimed at directly observing gravity-mediated entanglement.

Experimental tests of gravity-mediated entanglement could herald a new era in our understanding of the fundamental nature of the universe. According to author Emanuele Polino, who worked as a postdoc in the Quantum Lab of Sapienza University at the time of the research, supported by the QISS consortium, “The implications of this research are profound. It offers an experimental validation for the principles behind future quantum gravity experiments that will serve as litmus tests for competing theoretical frameworks.”

As physicists continue to push the boundaries of experimental and theoretical inquiry, the quest to unlock the secrets of quantum gravity takes a significant step forward with this groundbreaking research.

For details, see the original Gold Open Access article by E. Polino et al., “Photonic implementation of quantum gravity simulator,” Adv. Photon. Nexus 3(3) 036011 (2024) doi 10.1117/1.APN.3.3.036011.



Journal

Advanced Photonics Nexus

DOI

10.1117/1.APN.3.3.036011

Article Title

Photonic implementation of quantum gravity simulator

Article Publication Date

22-May-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Running Quantum Dynamics on Your Laptop? Breakthrough Technique Brings Us Closer

Running Quantum Dynamics on Your Laptop? Breakthrough Technique Brings Us Closer

October 8, 2025
Creating Advanced Polymers for Next-Generation Bioelectronics

Creating Advanced Polymers for Next-Generation Bioelectronics

October 8, 2025

ACS President Reacts to 2025 Nobel Prize in Chemistry Announcement

October 8, 2025

Innovative 3D Printing Technique ‘Grows’ Ultra-Strong Materials

October 8, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1123 shares
    Share 448 Tweet 280
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    80 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding the Recipe for a Potent Plant-Based Medicine

Sperm Sequencing Uncovers Widespread Male Germline Selection

University of Houston Scientists Discover Rare Bacterium That ‘Plays Dead’ to Survive

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.