• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Winners and losers: Climate change will shift vegetation

Bioengineer by Bioengineer
February 21, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Projected global warming will likely decrease the extent of temperate drylands by a third over the remainder of the 21st century coupled with an increase in dry deep soil conditions during agricultural growing season. These results have been presented in Nature Communications by an international collaboration led by the US Geological Survey and members from seven countries, including Scott Wilson at the Climate Impacts Research Centre (CIRC) at Umeå University in Sweden.

"I was impressed by the scope of the computer model: with many components of the water cycle calculated daily for 30 years, at 20,000 sites. All of this to simulate the current climate as well as 16 possible future climates. The variety of possible future climates gave pretty consistent outcomes, lending credibility to the results," says Professor Scott Wilson, visiting researcher at Umeå University and researcher within CIRC.

Dryland habitats expanded by 4-­8% in the 20th century and now cover 40% of the global terrestrial surface. As the global climate warms this expansion will likely continue. Forecasting the changes in precipitation and soil moisture for tropical and subtropical regions as a result of global warming is well constrained due to soil moisture patterns being closely linked to Hadley Circulations.

However, until recently, much uncertainty still existed concerning temperate drylands. The certainty of the forecasts is particularly important as warming leads to shifts from temperate to subtropical drylands, which leads to changes in precipitation and soil moisture, which in turn has profound effects on ecological services, provided to humanity, including the viability of certain temperate agricultural systems.

This uncertainty is changing because of improved supercomputer modelling of the movement of water through ecosystems, based on 20,000 locations around the world.

The results suggest that climate change will convert much of the area currently occupied by temperate grasslands and deserts to subtropical vegetation with effects on associated wildlife and human populations.

Specifically, these results predict a loss of 15 to 30 per cent of temperate grasslands by the end of the century with a substantial increase in deep soil drought conditions. The impacts can have large consequences for humanity.

"For example, with the expansion of subtropical drylands as temperate drylands warm cool season crops such as wheat and potato would no longer be economically viable," says Scott Wilson. "Further, these subtropical drylands are home to aggressive diseases such as dengue and schistosomiasis. Given the predicted changes to dryland habitats globally, the outcome of this research is essential for developing strategies for adaptation by policy makers."

###

About CIRC

The Climate Impacts Research Centre (CIRC) conducts research, education, and outreach with focus on terrestrial and aquatic ecosystems in Arctic and alpine environments. The aim is to integrate new knowledge in ecology and biogeochemistry to get a better understanding of current conditions and making projections for the future. The operations are based in the Abisko Scientific Research Station, 200 km north of the Arctic Circle in Sweden (68.35° N, 18.82° E).

Media Contact

Ingrid Söderbergh
[email protected]
46-706-040-334
@UmeaUniversity

http://www.umu.se/umu/index_eng.html

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Breakthrough in Bone Regeneration: Stem Cells from Fat Tissue Pave the Way

November 5, 2025
Large Language Models Boost Human-Robot Flexible Scheduling

Large Language Models Boost Human-Robot Flexible Scheduling

November 5, 2025

DNA Repair Deficiency Linked to UTUC Nectin-4

November 5, 2025

Assessing School Nurse Access and Satisfaction in Spain

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breakthrough in Bone Regeneration: Stem Cells from Fat Tissue Pave the Way

Large Language Models Boost Human-Robot Flexible Scheduling

DNA Repair Deficiency Linked to UTUC Nectin-4

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.