• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Development of revolutionary color-tunable photonic devices

Bioengineer by Bioengineer
June 3, 2024
in Chemistry
Reading Time: 3 mins read
0
Schematic representation of a flexible, stretchable photonic device capable of structural color tuning in both long and short wavelength directions
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team at Pohang University of Science and Technology (POSTECH), spearheaded by Professor Su Seok Choi and Ph.D. candidate Seungmin Nam from the Department of Electrical Engineering, has developed a novel stretchable photonic device that can control light wavelengths in all directions. This pioneering study was published in Light: Science & Applications on May 22.

Schematic representation of a flexible, stretchable photonic device capable of structural color tuning in both long and short wavelength directions

Credit: POSTECH

A team at Pohang University of Science and Technology (POSTECH), spearheaded by Professor Su Seok Choi and Ph.D. candidate Seungmin Nam from the Department of Electrical Engineering, has developed a novel stretchable photonic device that can control light wavelengths in all directions. This pioneering study was published in Light: Science & Applications on May 22.

 

Structural colors are produced through the interaction of light with microscopic nanostructures, creating vibrant hues without relying on traditional color mixing methods. Conventional displays and image sensors blend the three primary colors (red, green, and blue), while structural color technology leverages the inherent wavelengths of light, resulting in more vivid and diverse color displays. This innovative approach is gaining recognition as a promising technology in the nano-optics and photonics industries.

 

Traditional color mixing techniques, which use dyes or luminescent materials, are limited to passive and fixed color representation. In contrast, tunable color technology dynamically controls nanostructures corresponding to specific light wavelengths, allowing for the free adjustment of pure colors. Previous research has primarily been limited to unidirectional color tuning, typically shifting colors from red to blue. Reversing this shift—from blue to red, which has a longer wavelength—has been a significant challenge. Current technology only allows adjustments towards shorter wavelengths, making it difficult to achieve diverse color representation in the ideal free wavelength direction. Therefore, a new optical device capable of bidirectional and omnidirectional wavelength adjustment is needed to maximize the utilization of wavelength control technology.

 

Professor Choi’s team addressed these challenges by integrating chiral liquid crystal elastomers (CLCEs) with dielectric elastomer actuators (DEAs). CLCEs are flexible materials capable of structural color changes, while DEAs induce flexible deformation of dielectrics in response to electrical stimuli. The team optimized the actuator structure to allow both expansion and contraction, combining it with CLCEs, and developed a highly adaptable stretchable device. This device can freely adjust the wavelength position across the visible spectrum, from shorter to longer wavelengths and vice versa.

 

In their experiments, the researchers demonstrated that their CLCE-based photonic device could control structural colors over a broad range of visible wavelengths (from blue at 450nm to red at 650nm) using electrical stimuli. This represents a significant advancement over previous technologies, which were limited to unidirectional wavelength tuning.

 

This research not only establishes a foundational technology for advanced photonic devices but also highlights its potential for various industrial applications.

 

Professor Choi remarked, “This technology can be applied in displays, optical sensors, optical camouflage, direct optical analogue encryption, biomimetic sensors, and smart wearable devices, among many other applications involving light, color, and further broadband electromagnetic waves beyond visible band. We aim to expand its application scope through ongoing research.”

 

The study was supported by the Samsung Research Funding & Incubation Center of Samsung Electronics and the Technology Innovation Program (Flexible Intelligent Variable Information Display) of the Korea Planning & Evaluation Institute of Industrial Technology.



Journal

Light Science & Applications

DOI

10.1038/s41377-024-01470-w

Article Title

Omnidirectional color wavelength tuning of stretchable chiral liquid crystal elastomers

Article Publication Date

22-May-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.