• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New wind speed sensor uses minimal power for advanced weather tracking

Bioengineer by Bioengineer
May 29, 2024
in Science News
Reading Time: 3 mins read
0
Overview of the breeze-awaken anemometer (B-WA) and the rolling-bearing triboelectric nanogenerator (RB-TENG).
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have unveiled a pioneering breeze wake-up anemometer (B-WA), employing a rolling-bearing triboelectric nanogenerator (RB-TENG) that provides a new strategy for low-energy consumption environmental monitoring. The ability of the B-WA to operate autonomously and efficiently in varying wind conditions marks a substantial advancement in the field of sustainable environmental monitoring.

Overview of the breeze-awaken anemometer (B-WA) and the rolling-bearing triboelectric nanogenerator (RB-TENG).

Credit: Microsystems & Nanoengineering

Researchers have unveiled a pioneering breeze wake-up anemometer (B-WA), employing a rolling-bearing triboelectric nanogenerator (RB-TENG) that provides a new strategy for low-energy consumption environmental monitoring. The ability of the B-WA to operate autonomously and efficiently in varying wind conditions marks a substantial advancement in the field of sustainable environmental monitoring.

Anemometers are crucial tools for collecting meteorological data, essential for accurate weather forecasting and environmental monitoring. Traditional anemometers often face challenges related to high maintenance and operational costs, primarily due to their high quiescent power consumption and reliance on battery power. These challenges are particularly acute in remote locations where replacing batteries or repairing equipment is difficult and expensive. The introduction of low-power self-waking-up anemometers can transform environmental monitoring by enabling longer deployment periods, reducing the frequency of maintenance, and enhancing the reliability of data collection in these critical but hard-to-reach areas.

A new study (DOI: 10.1038/s41378-024-00676-7) published in Microsystems & Nanoengineering on April 8, 2024, by the team from the Beijing Institute of Nanoenergy and Nanosystems, has developed a Breeze Wake-up Anemometer (B-WA) designed to dramatically enhance remote weather monitoring capabilities.

The newly developed B-WA integrates the following key components: two rolling-bearing triboelectric nanogenerators (RB-TENGs), a self-waking-up module (SWM) and a signal processing module (SPM). B-WA can remain in a near-zero power quiescent state until activated by wind speeds exceeding 2 m/s. The RB-TENG is engineered to generate power from the motion of rolling bearings, which is harnessed to wake the device from its low-power state. Upon activation, the SWM can wake up the entire system within just 0.96 seconds, enabling real-time wind speed measurement. Concurrently, the SPM processes the frequency of the signals generated by the RB-TENG to accurately monitor wind speed with a sensitivity of 9.45 Hz/(m/s), ensuring precise and reliable data collection.

Prof. Chi Zhang, the project’s lead scientist, stated, “This device not only pushes the boundaries of nanotechnology but also offers a sustainable solution to global weather monitoring challenges. Its low-energy requirement and high sensitivity are crucial for the future of environmental sensing.”

This technology is pivotal for areas like agricultural planning and natural disaster prevention, where accurate and timely weather information can significantly impact decision-making and operational safety. The B-WA’s robust and low-maintenance design makes it ideal for integrating into Internet of Things (IoT) networks, enhancing distributed environmental monitoring across various sectors.

###

References

DOI

10.1038/s41378-024-00676-7

Original Source URL

https://doi.org/10.1038/s41378-024-00676-7

Funding information

This work was supported by the National Natural Science Foundation of China (Nos. U23A20640, 52250112, 52203308) and Beijing Natural Science Foundation (3242013).

About Microsystems & Nanoengineering

Microsystems & Nanoengineering is an online-only, open access international journal devoted to publishing original research results and reviews on all aspects of Micro and Nano Electro Mechanical Systems from fundamental to applied research. The journal is published by Springer Nature in partnership with the Aerospace Information Research Institute, Chinese Academy of Sciences, supported by the State Key Laboratory of Transducer Technology.



Journal

Microsystems & Nanoengineering

DOI

10.1038/s41378-024-00676-7

Subject of Research

Not applicable

Article Title

A near-zero quiescent power breeze wake-up anemometer based on a rolling-bearing triboelectric nanogenerator

Article Publication Date

8-Apr-2024

COI Statement

The authors declare that they have no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

Patient Insights: MyChart’s Role in IUD Placement

November 1, 2025
blank

Reevaluating Xylotini: Codon Bias and Phylogenetic Insights

November 1, 2025

Delayed Cord Clamping Reduces Bronchopulmonary Dysplasia Risk

November 1, 2025

Nicotine Mitigates Early Neurodegeneration Through Autophagic Enhancement

November 1, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Patient Insights: MyChart’s Role in IUD Placement

Reevaluating Xylotini: Codon Bias and Phylogenetic Insights

Delayed Cord Clamping Reduces Bronchopulmonary Dysplasia Risk

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.