• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Autonomous medical intervention extends ‘golden hour’ for traumatic injuries with emergency air transport

Bioengineer by Bioengineer
May 24, 2024
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For the first time, a closed loop, autonomous intervention nearly quadrupled the “golden hour” during which surgeons could save the life of a large animal with internal traumatic bleeding while in emergency ground and air transport.

Resuscitation based on Functional Hemodynamic Monitoring (ReFit) system

Credit: Nathan Langer, UPMC

For the first time, a closed loop, autonomous intervention nearly quadrupled the “golden hour” during which surgeons could save the life of a large animal with internal traumatic bleeding while in emergency ground and air transport.

This breakthrough in trauma care, announced today in Intensive Care Medicine Experimental by physician-scientists at the University of Pittsburgh School of Medicine and funded by the U.S. Department of Defense, has enormous potential for saving the lives of traumatically injured members of the military harmed in remote battlefields or civilians injured in mass casualty events or rural locations far from advanced medical care.

“Under normal conditions, if we can get somebody with severe trauma to the hospital within an hour, there’s a good chance that we can save them,” said the project’s scientific lead Michael R. Pinsky, M.D., professor of critical care medicine, bioengineering and clinical and translational medicine at Pitt. “For the first time in the history of medicine, we took an animal in a critical state onto a helicopter and autonomously brought it back healthier than when it was placed in emergency transport hours earlier. The implications this has for treating people in the field with trauma are phenomenal.”

The multidisciplinary Pitt team, assisted by computer scientists from Carnegie Mellon University, tested a key component of the Trauma Care in a Rucksack (TRACIR) system, designed to fit inside a backpack that could be delivered by drone to remote locations. The minimally invasive, closed loop algorithm, called Resuscitation based on Functional Hemodynamic Monitoring (ReFit), autonomously gave intravenous fluids, blood and drugs to maintain vital functions in pigs with a traumatic lethal liver injury for three to five hours without human intervention, while they were transported by ground ambulance and helicopter and finally returned to the laboratory surgical suite as a demonstration project.

On different days, a total of four fully anesthetized pigs – whose anatomy and response to traumatic injury closely resembles that of humans – underwent surgical liver laceration in a laboratory surgical suite under approved animal research guidelines. They were allowed to hemorrhage for 30 minutes before being resuscitated with the ReFit computer algorithm system, which is about the size of a microwave. Once the autonomous resuscitation device was turned on, the pigs received no medical intervention from a human beyond monitoring by an emergency medicine doctor to ensure they remained fully anesthetized and in no discomfort.

Two of the pigs, connected to ReFit, were placed on a stretcher and moved by emergency medical technicians to a hospital helipad where a medical helicopter flew them around Western Pennsylvania for several hours to mimic an emergency rescue from a remote location. The other two were transported first by ground ambulance to the Allegheny County Airport where they were then loaded onto a medical helicopter and flown back to the hospital helipad over similarly prolonged flight paths to simulate long distance transport.

Once returned, the research team confirmed that they could resuscitate the anesthetized pigs autonomously for several hours without human intervention using only a computer-generated autonomous care algorithm.

“By keeping these animals with a lethal injury alive for up to five hours with a computer driving the resuscitation, you can see how that extends the golden hour,” said principal investigator Ronald Poropatich, M.D., director of the Center for Military Medicine Research and professor of medicine at Pitt. “We are excited about the potential to soon apply this technology to saving the lives of people injured in austere environments.”

The team’s next step is to test transporting ReFit-connected injured animals by unmanned aerial drones to make the process even more effective for rescuing injured people in difficult-to-access locations, such as a mountainside or a military battlefield.

Additional authors on this research are Hernando Gomez, M.D., Francis X. Guyette, M.D., Leonard Weiss, M.D., Lisa Gordon, Theodore Lagattuta, and David Salcido, Ph.D., all at Pitt, and Artur Dubrawski, Ph.D., Jim Leonard, and Robert MacLachlan, all at Carnegie Mellon University.

This work is supported by the US Army Medical Research and Materiel Command under Contract No. W81XWH-19-C-0101 and W81XWH-19-C-0083.

The views, opinions and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

In conducting research using animals, the investigators adhered to the Animal Welfare Act Regulations and other Federal statutes relating to animals and experiments involving animals and the principles set forth in the current version of the Guide for Care and Use of Laboratory Animals, National Research Council.



Journal

Intensive Care Medicine Experimental

Subject of Research

Animals

Article Title

Autonomous Precision Resuscitation during Ground and Air Transport of an animal hemorrhagic shock model

Article Publication Date

24-May-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Techniques Broaden Access to Vital Human Health Molecules

August 28, 2025

JAMA Network Appoints New Editor-in-Chief for JAMA Cardiology

August 28, 2025

Ferroptosis Impact on Liver Injury Post-Transplantation

August 28, 2025

Landmark Multi-Center Study Reveals Transcendental Meditation Reduces Diabetes Risk and Promotes Weight Loss in Black Women

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Immune Cell Therapy Shows Promise in Stabilizing Advanced Head and Neck Cancer

Innovative Techniques Broaden Access to Vital Human Health Molecules

Innovative Algorithm Paves the Way for Enhanced Noise Reduction in Quantum Devices

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.