• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Using solar energy to generate heat at high temperatures

Bioengineer by Bioengineer
May 15, 2024
in Chemistry
Reading Time: 3 mins read
0
Thermal Trap
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The production of cement, metals and many chemical commodities requires extremely high temperatures of over a thousand degrees Celsius. At present, this heat is usually obtained by combusting fossil fuels: coal or natural gas, which emit large amounts of greenhouse gases. Heating with renewable electricity is not an alternative, as this would be inefficient at these high temperatures. Although much of our economy and society will need to become carbon neutral in the coming decades, these industrial processes are likely to continue to be powered by fossil fuels for the near future. They are considered difficult to decarbonise.

Researchers at ETH Zurich have now demonstrated, in the lab, a way to make these industries independent of fossil fuels. Using solar radiation, they have engineered a device that can deliver heat at the high temperatures needed for the production processes. The team led by Emiliano Casati, a scientist in the Energy and Process Systems Engineering Group, and Aldo Steinfeld, Professor of Renewable Energy Carriers, has developed a thermal trap. It consists of a quartz rod coupled to a ceramic absorber which, thanks to its optical properties, can efficiently absorb sunlight and convert it into heat.

In their lab-​scale experiments, the team used a quartz rod measuring 7.5 centimetres in diameter and 30 centimetres in length. They exposed it to artificial light with an intensity equivalent to 135 times that of sunlight, reaching temperatures of up to 1050 degrees Celsius. Previous studies by other researchers have achieved a maximum of 170 degrees with such thermal traps.

Thermal Trap

Credit: Photograph: ETH Zurich / Emiliano Casati

The production of cement, metals and many chemical commodities requires extremely high temperatures of over a thousand degrees Celsius. At present, this heat is usually obtained by combusting fossil fuels: coal or natural gas, which emit large amounts of greenhouse gases. Heating with renewable electricity is not an alternative, as this would be inefficient at these high temperatures. Although much of our economy and society will need to become carbon neutral in the coming decades, these industrial processes are likely to continue to be powered by fossil fuels for the near future. They are considered difficult to decarbonise.

Researchers at ETH Zurich have now demonstrated, in the lab, a way to make these industries independent of fossil fuels. Using solar radiation, they have engineered a device that can deliver heat at the high temperatures needed for the production processes. The team led by Emiliano Casati, a scientist in the Energy and Process Systems Engineering Group, and Aldo Steinfeld, Professor of Renewable Energy Carriers, has developed a thermal trap. It consists of a quartz rod coupled to a ceramic absorber which, thanks to its optical properties, can efficiently absorb sunlight and convert it into heat.

In their lab-​scale experiments, the team used a quartz rod measuring 7.5 centimetres in diameter and 30 centimetres in length. They exposed it to artificial light with an intensity equivalent to 135 times that of sunlight, reaching temperatures of up to 1050 degrees Celsius. Previous studies by other researchers have achieved a maximum of 170 degrees with such thermal traps.

Large-​scale solar concentrating technologies are already established at an industrial scale for solar power generation, for example in Spain, the US and in China. These plants typically operate at up to 600 degrees. At higher temperatures, heat loss by radiation increases and reduces the efficiency of the plants. A major advantage of the thermal trap developed by ETH Zurich researchers is that it minimises radiative heat losses.

High-​temperature solar plants

Our approach significantly improves the efficiency of solar absorption,” says Casati. “We are, therefore, confident that this technology supports the deployment of high-​temperature solar plants.” However, detailed technical and economic analyses are still pending, he says. Such analysis is beyond the scope of the current experimental study, which the researchers have published in the scientific journal external pageDevicecall_made.

Casati is continuing his research to optimise the process. The technology could one day make it possible to use solar energy not only to generate electricity, but also to decarbonise energy-​intensive industries on a large scale. “To combat climate change, we need to decarbonise energy in general,” says Casati. “People often think of energy in terms of electricity, but we actually use about half of our energy in the form of heat.”



Journal

Device

DOI

10.1016/j.device.2024.100399

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Solar thermal trapping at 1,000°C and above

Article Publication Date

15-May-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.