• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A bionanomachine for green chemistry

Bioengineer by Bioengineer
May 14, 2024
in Chemistry
Reading Time: 4 mins read
0
Xiaodan Li and Richard Kammerer
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the Paul Scherrer Institute PSI have for the first time precisely characterised the enzyme styrene oxide isomerase, which can be used to produce valuable chemicals and drug precursors in an environmentally friendly manner. The study appears today in the journal Nature Chemistry.

Xiaodan Li and Richard Kammerer

Credit: Paul Scherrer Institute/Markus Fischer

Researchers at the Paul Scherrer Institute PSI have for the first time precisely characterised the enzyme styrene oxide isomerase, which can be used to produce valuable chemicals and drug precursors in an environmentally friendly manner. The study appears today in the journal Nature Chemistry.

 

Enzymes are powerful biomolecules that can be used to produce many substances at ambient conditions. They enable “green” chemistry, which reduces environmental pollution resulting from processes used in synthetic chemistry. One such tool from nature has now been characterised in detail by PSI researchers: the enzyme styrene oxide isomerase. It is the biological version of the Meinwald reaction, an important chemical reaction in organic chemistry.

 

“The enzyme, discovered decades ago, is made by bacteria,” says Richard Kammerer of PSI’s Biomolecular Research Laboratory. His colleague Xiaodan Li adds: “But because the way it functions was not known, its practical application has been limited up to now.” The two researchers and their team have elucidated the structure of the enzyme as well as the way it works.

 

Simple mechanism for a complicated reaction

 

Microorganisms possess specific enzymes with which they can, for example, break down harmful substances and use them as nutrients. Styrene oxide isomerase is one of these. Together with two other enzymes, it enables certain environmental bacteria to grow on the hydrocarbon styrene.

 

The styrene oxide isomerase catalyses a very specific step in the reaction: it splits a three-membered ring in the styrene oxide consisting of one oxygen and two carbon atoms, a so-called epoxide. Thereby the enzyme is highly specific and creates only one product. It is also capable of converting a number of additional substances, producing important precursors for medical applications.

 

One particular advantage has to do with the fact that in many chemical reactions, both an image and a mirror image of a chemical compound are formed, which may have completely different biological effects. But this enzyme specifically creates only one of the two products. In chemistry this property is called stereospecificity – it is particularly important for the generation of precursor molecules for drugs. “The enzyme is an impressive example of how nature makes chemical reactions possible in a simple and ingenious way,” Xiaodan Li says.

 

Versatile

 

In the course of their investigations, which they conducted in part at the Swiss Light Source SLS, the PSI researchers discovered the enzyme’s secret: an iron-containing group in its interior, similar to the iron-containing pigment in our red blood cells. This haem group binds the epoxide ring, and that’s how it makes the reaction so simple and efficient. Other parts of the investigations were carried out by the group of Volodymyr Korkhov, also from the PSI Laboratory for Biomolecular Research and Associate Professor in the Department of Biology at ETH Zurich, using cryo-electron microscopy.

 

Xiaodan Li and Richard Kammerer feel certain that the enzyme will prove extremely useful in the chemical and pharmaceutical industries. “It is so far the only bacterial enzyme known to catalyse the Meinwald reaction,” Richard Kammerer emphasises. With the enzyme’s help, industry could produce precursors for drugs and important chemicals under energy-saving and environmentally friendly conditions.

 

Xiaodan Li adds: “The enzyme could potentially be altered so that it can produce a great many new substances.” In addition, the enzyme is very stable and thus is suitable for large-scale industrial applications. “It will certainly become a new, important tool for the circular economy and green chemistry,” the PSI researchers are convinced.

 

Text: Brigitte Osterath

 

 

About PSI

The Paul Scherrer Institute PSI develops, builds and operates large, complex research facilities and makes them available to the national and international research community. The institute’s own key research priorities are in the fields of matter and materials, energy and environment and human health. PSI is committed to the training of future generations. Therefore about one quarter of our staff are post-docs, post-graduates or apprentices. Altogether PSI employs 2200 people, thus being the largest research institute in Switzerland. The annual budget amounts to approximately CHF 420 million. PSI is part of the ETH Domain, with the other members being the two Swiss Federal Institutes of Technology, ETH Zurich and EPFL Lausanne, as well as Eawag (Swiss Federal Institute of Aquatic Science and Technology), Empa (Swiss Federal Laboratories for Materials Science and Technology) and WSL (Swiss Federal Institute for Forest, Snow and Landscape Research). Insight into the exciting research of the PSI with changing focal points is provided 3 times a year in the publication 5232 – The Magazine of the Paul Scherrer Institute.

 

 

 

Contact

 

Dr. Xiaodan Li
Biomolecular Research Laboratory
Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
Telephone: +41 56 310 44 69, e-mail: [email protected] [German, English]

PD Dr. Richard Alfred Kammerer
Biomolecular Research Laboratory
Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
Telephone: +41 56 310 47 65, e-mail: [email protected] [German, English]

 

Prof. Dr. Volodymyr Korkhov

Laboratory for Biomolecular Research

Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland

Telephone: +41 56 310 28 42, e-mail: [email protected] [English]

 

 

Original publication

 

Structural basis of the Meinwald rearrangement catalyzed by styrene oxide isomerase

Basavraj Khanppnavar, Joel P.S. Choo, Peter-Leon Hagedoorn, Grigory Smolentsev, Saša Štefanić, Selvapravin Kumaran, Dirk Tischler, Fritz Winkler, Volodymyr M. Korkhov, Zhi Li, Richard A. Kammerer,  Xiaodan Li

Nature Chemistry, 14.05.2024 (online)

DOI: 10.1038/s41557-024-01523-y



Journal

Nature Chemistry

DOI

10.1038/s41557-024-01523-y

Method of Research

Experimental study

Article Title

Structural basis of the Meinwald rearrangement catalyzed by styrene oxide isomerase

Article Publication Date

14-May-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Innovative Protective Coating for Spacecraft in Development by Engineers

October 20, 2025
blank

Scientists Uncover Life’s Building Blocks in Ice Surrounding a Forming Star in Nearby Galaxy

October 20, 2025

Copper-Catalyzed Asymmetric Cross-Coupling with Reactive Radicals

October 20, 2025

The Quantum Doorway Puzzle: Electrons Struggling to Find Their Exit

October 20, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1269 shares
    Share 507 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    302 shares
    Share 121 Tweet 76
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    129 shares
    Share 52 Tweet 32
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    125 shares
    Share 50 Tweet 31

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Managing Anxiety During Menopause: The Uncertain Role of Hormone Therapy

Glutamate Deficit Affects Mouse Reproduction, Metabolism Sex-Specifically

Menopause Transition Linked to Elevated Risk of Eye Disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.