• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Decoding development: mRNA’s role in embryo formation

Bioengineer by Bioengineer
May 7, 2024
in Biology
Reading Time: 3 mins read
0
Hybridization chain reaction (HCR) in situs
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new study at Hebrew University reveals insights into mRNA regulation during embryonic development. The study combines single-cell RNA-Seq and metabolic labeling in zebrafish embryos, distinguishing between newly-transcribed and pre-existing mRNA. This approach quantifies mRNA transcription and degradation rates within individual cell types, uncovering varied regulatory rates across genes and cell-type-specific differences in degradation. Understanding mRNA regulation during embryonic development helps decipher how genes are turned on and off in specific cells at precise times, informing our understanding of development, cell fate decisions, and potential applications in medicine and biology.

Hybridization chain reaction (HCR) in situs

Credit: Dr Jeffrey Farrell, NIH

A new study at Hebrew University reveals insights into mRNA regulation during embryonic development. The study combines single-cell RNA-Seq and metabolic labeling in zebrafish embryos, distinguishing between newly-transcribed and pre-existing mRNA. This approach quantifies mRNA transcription and degradation rates within individual cell types, uncovering varied regulatory rates across genes and cell-type-specific differences in degradation. Understanding mRNA regulation during embryonic development helps decipher how genes are turned on and off in specific cells at precise times, informing our understanding of development, cell fate decisions, and potential applications in medicine and biology.

A new study led by PhD Student Lior Fishman and team under the guidance of researcher Dr. Michal Rabani from The Alexander Silberman Institute of Life Science at Hebrew University, and in collaboration with researchers from the National Institutes of Health in the USA, sheds light on the intricate process of mRNA regulation during embryonic development, providing novel insights into how pluripotent cells adopt specialized identities through gene expression.

Embryonic development involves pluripotent cells assuming specialized identities by adopting particular gene expression profiles. However, understanding the relative contributions of mRNA transcription and degradation to shaping these profiles has been challenging, particularly within embryos with diverse cellular identities.

In the study, researchers used a technique called single-cell RNA sequencing along with metabolic labelling to track how genes are turned on and off over time in zebrafish embryos. They could tell apart the mRNA that was made new (from the embryo itself) and the mRNA that was already there (from the mother). Using mathematical models, they measured how fast genes were turned on and off in different types of cells as they developed.

The results of the study reveal highly varied regulatory rates across thousands of genes. The researchers observed coordinated transcription and destruction rates for many transcripts and linked differences in degradation to specific sequence elements. Importantly, they identified cell-type-specific differences in degradation, including selective retention of maternal transcripts within primordial germ cells and enveloping layer cells, two of the earliest specified cell types.

Dr. Michal Rabani, senior author of the study, commented, “Our study provides a quantitative approach to studying mRNA regulation during a dynamic spatio-temporal response. This work opens up new avenues for understanding the molecular mechanisms underlying cell fate determination during embryonic development.”

The findings of this study contribute to a deeper understanding of mRNA regulation and its role in shaping cellular identities during embryonic development. The research team hopes that their work will pave the way for future studies aimed at unraveling the complexities of gene expression regulation in various biological contexts.



Journal

Nature Communications

DOI

10.1038/s41467-024-47290-9

Method of Research

Data/statistical analysis

Subject of Research

Animals

Article Title

Cell-type-specific mRNA transcription and degradation kinetics in zebrafish embryogenesis from metabolically labeled single-cell RNA-seq

Article Publication Date

10-Apr-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

ACSS1’s Crucial Role in Mammary Development Explored

ACSS1’s Crucial Role in Mammary Development Explored

October 15, 2025
Tiny Regenerative Worm Offers Breakthrough Insights into Healing, New Study Reveals

Tiny Regenerative Worm Offers Breakthrough Insights into Healing, New Study Reveals

October 15, 2025

New Study Reveals How Aligning Drug Dosing with Circadian Rhythms Can Enhance Treatment Effectiveness

October 15, 2025

Examining Gender Disparities in COVID-19 Mortality

October 15, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1245 shares
    Share 497 Tweet 311
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Probiotic Extracts: A New Approach to Diabetes Management

Hydrosalpinx Surgery Enhances IVF Success Rates

Japanese Weed Melon: A Defense Against Whiteflies

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.