• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Could fishponds help with Hawaiʻi’s food sustainability?

Bioengineer by Bioengineer
April 26, 2024
in Biology
Reading Time: 3 mins read
0
Structure at Heʻeia fishpond, Oʻahu
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Indigenous aquaculture systems in Hawaiʻi, known as loko iʻa or fishponds, can increase the amount of fish and fisheries harvested both inside and outside of the pond. This is the focus of a study published by a team of researchers at the University of Hawaiʻi at Mānoa Hawaiʻi Institute of Marine Biology (HIMB). Today, aquaculture supplies less than 1% of Hawaiʻi’s 70 million pounds of locally available seafood, but revitalization of loko i‘a has the potential to significantly increase locally available seafood. 

Structure at Heʻeia fishpond, Oʻahu

Credit: Anne Innes-Gold

Indigenous aquaculture systems in Hawaiʻi, known as loko iʻa or fishponds, can increase the amount of fish and fisheries harvested both inside and outside of the pond. This is the focus of a study published by a team of researchers at the University of Hawaiʻi at Mānoa Hawaiʻi Institute of Marine Biology (HIMB). Today, aquaculture supplies less than 1% of Hawaiʻi’s 70 million pounds of locally available seafood, but revitalization of loko i‘a has the potential to significantly increase locally available seafood. 

According to historical accounts, loko i‘a can create surplus fish inside the pond, but their role as a nursery ground seeding surrounding fish populations has received less attention.

“We have demonstrated the ability of Indigenous aquaculture systems to produce a surplus of fish as well as supplement fisheries in the surrounding estuary,” said lead author and marine  biology PhD candidate Anne Innes-Gold. “We have heard people voice the idea that historically, loko iʻa provided nursery grounds that may have supplemented fish populations in the estuary. Our study is the first that we are aware of to demonstrate this idea in academic literature.”

Hawaiʻi’s unique aquaculture system

The Indigenous aquaculture systems found in Hawaiʻi boast a design found nowhere else in the world, and are among the most productive and diverse of their kind. Loko i‘a historically yielded nearly 2 million pounds of fish annually, and hoaʻāina (land tenants) and kiaʻi (caretakers) initially managed them with a “take what you need” mentality to ensure the resource persisted. Most loko i‘a were destroyed in the 20th century, and by 1994 only six of 500 historical loko i‘a were still operating.

“As aquaculture continues to provide a growing proportion of our seafood globally, revival of Indigenous aquaculture systems will be beneficial to sustainably maintain and increase our seafood supply,” said Innes-Gold.

Restoration success story

One success story of loko iʻa restoration is the Heʻeia Fishpond, located in Windward O‘ahu and stewarded by Native Hawaiian nonprofit, Paepae o He‘eia. Their mission is to link Indigenous knowledge with contemporary management to promote cultural sustainability and restore and maintain a loko i‘a for the local community. The benefits of restoring loko i‘a and related systems can help boost local food production, and provide community members with a space to nourish their bodies and minds, connect with ‘āina, practice reciprocity and promote cultural education.

This work was funded by Hawaiʻi Sea Grant, the Heʻeia National Estuarine Research Reserve, and the National Marine Fisheries Service-Sea Grant Fellowship in Population and Ecosystem Dynamics. With their foundational work complete, Innes-Gold and her team plan to simulate potential climate change impacts in a loko iʻa system.



Journal

Ecosphere

DOI

10.1002/ecs2.4797

Method of Research

Computational simulation/modeling

Article Title

Restoration of an Indigenous aquaculture system can increase reef fish density and fisheries harvest in Hawai‘i

Article Publication Date

18-Mar-2024

COI Statement

The authors declare no conflicts of interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Visual Experience’s Impact on Haptic Spatial Perception

October 20, 2025
blank

Unveiling Sex-Switching in Silver Pomfret Juveniles

October 20, 2025

Continuous Electrocardiogram-Based Sex Index Unveiled

October 19, 2025

Early Gonadectomy Impacts Lifelong Frailty in Dogs

October 19, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1265 shares
    Share 505 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    297 shares
    Share 119 Tweet 74
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    126 shares
    Share 50 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Visual Experience’s Impact on Haptic Spatial Perception

Exploring Co-Occurring Autism and BPD in Inpatients

Nursing Students’ Metaphors: Envisioning AI’s Future Impact

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.