• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Developing a catalytic conveyor belt

Bioengineer by Bioengineer
February 17, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Oleg E. Shklyaev and Henry Shum

PITTSBURGH (February 17, 2017) … Capitalizing on previous studies in self-powered chemo-mechanical movement, researchers at the University of Pittsburgh's Swanson School of Engineering and Penn State University's Department of Chemistry have developed a novel method of transporting particles that utilizes chemical reactions to drive fluid flow within microfluidic devices. Their research, "Harnessing catalytic pumps for directional delivery of microparticles in microchambers," was published today in the journal Nature Communications (DOI: 10.1038/ncomms14384).

The computational modeling research was led by Anna C. Balazs, Distinguished Professor of Chemical and Petroleum Engineering at Pitt, with post-doctoral associates Oleg E. Shklyaev and Henry Shum. Experiments at Penn State were conducted by Ayusman Sen, Distinguished Professor of Chemistry and graduate students S. Das, A. Altemose, I.Ortiz-Rivera and L. Valdez. Their combined theoretical and experimental findings could enable controllable transport of particles and cells, allowing highly sensitive chemical assays to be performed more rapidly and efficiently.

"One of the critical challenges in transporting microparticles within devices is delivering the particle to a specific location," Dr. Balazs explained. "Much like a conveyer belt in a factory, you want to move the particle within a closed system without any modification to its surface or damage to its structure."

Dr. Balazs noted that in addition to successfully delivering the particles, the other challenges the researchers faced were maintaining unidirectional flow from point A to point B within a closed chamber, and ensuring that a critical concentration of these particles could be delivered to sensors, which only operate above a critical threshold. The solution was to generate a gradient of a chemical reagent by introducing the reagent at one end of the chamber, point A. Enzymes on the surface of the chamber consumed the reagent so that it was completely depleted at the point B. Since the presence of the reagent increases the fluid density, a density gradient was established between points A and B, leading to convective flow that transported particles like a conveyer belt.

"Previously, to generate spontaneous propulsion of microparticles, one needed to chemically modify the surface of these particles, thus altering their inherent properties," Dr. Balazs said. "Moreover, modifying the particle's surface does not necessarily allow you to direct its motion within the chamber. We were able to predicate through our computational models and demonstrate in the experiments performed at Penn State that the flow generated by the catalytic chemical reaction in the chamber could effectively transport particles to a particular sensor, and could permit control over the speed and direction of the particle transport, without having to use an external pump or any modification of the cargo."

"Utilizing catalytic reactions to drive fluids to controllably transport particulates in solution is a relatively new field, even though it's what our bodies do at any given moment when converting food to fuel. Replicating it within a synthetic system however is very difficult," Dr. Sen added. "In our lab, we were able to design a "machine" without the need for a mechanical device that could be used many times over simply by adding fuel to the chamber, while allowing the particle to remain a passive participant along for the ride."

###

Media Contact

Paul Kovach
[email protected]
412-624-0265

http://www.pitt.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Proximity to Toxic Sites Associated with Increased Risk of Aggressive Breast Cancer

October 10, 2025
UTA Physicist Secures $1.3 Million Grant to Advance Neutrino Research

UTA Physicist Secures $1.3 Million Grant to Advance Neutrino Research

October 10, 2025

ACMG Launches Newborn Screening Coalition to Drive Evidence-Based Advances in National Newborn Screening

October 10, 2025

Wiley Expands Physics Portfolio with Acquisition of Influential Nanophotonics Journal

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1195 shares
    Share 477 Tweet 298
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    83 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Proximity to Toxic Sites Associated with Increased Risk of Aggressive Breast Cancer

UTA Physicist Secures $1.3 Million Grant to Advance Neutrino Research

ACMG Launches Newborn Screening Coalition to Drive Evidence-Based Advances in National Newborn Screening

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.