• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

WVU researcher studying worst western US megadrought in 1,200 years

Bioengineer by Bioengineer
April 17, 2024
in Chemistry
Reading Time: 3 mins read
0
Drylands WVU
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Drylands in the western United States are currently in the grips of a 23-year “megadrought,” and one West Virginia University researcher is working to gain a better understanding of this extreme climate event.

Drylands WVU

Credit: WVU Photo

Drylands in the western United States are currently in the grips of a 23-year “megadrought,” and one West Virginia University researcher is working to gain a better understanding of this extreme climate event.

Steve Kannenberg, assistant professor of biology at the WVU Eberly College of Arts and Sciences, is using observations from existing networks of scientific instrument stations across the region to inch toward that goal. 

The megadrought is an ongoing climate crisis for natural ecosystems, agricultural systems and human water resources, but researchers have a limited understanding of the phenomenon.

With joint National Science Foundation funding from Ecosystem Science Cluster and the Established Program to Stimulate Competitive Research, commonly known as EPSCoR, Kannenberg is seeking to identify where this drought has been most severe.

Data should reveal where the conditions have depleted groundwater and soil moisture and identify which dryland plants have been most affected.

The term “drylands” refers to areas where water availability limits the health of ecosystems.

“In West Virginia, we have plenty of water,” he said. “But, if you go out to Utah, for example, it’s very hot, very dry. And the health of the vegetation is determined by how much water is in the soil and how much water is in the air.”

Data on the west’s climatological history can be obtained by studying tree growth rings in drylands. Using tree rings, researchers have found the current 23-year drought period is the most severe over the last 1,200 years. Kannenberg will pair tree ring data with measurements of soil moisture, groundwater and ecosystem fluxes via eddy covariance flux towers.

“These are, essentially, fancy weather stations that can sense the ecosystem breathing,” he said. “It can quantify how much carbon is going into the vegetation from the atmosphere as plants photosynthesize during the day, and likewise, how much carbon is breathed out back into the atmosphere at night, because ecosystems respire like we do.”

The towers can also measure how much water is coming in via rain, how much goes out through plants to the atmosphere and how much evaporates from the soil surface.

Globally, megadroughts are projected to increase in frequency and severity in the coming decades, and Kannenberg’s synthesized data may help inform researchers about other dryland and non-dryland biomes.

He’s also focused on carbon capture. The photosynthetic rate of the vegetation across drylands affects their ability to store carbon, but trees can only photosynthesize when there’s sufficient water available. This process is fairly consistent in eastern forests, but difficult to predict in drylands.

“If you think of a forest here in West Virginia, there’s obviously a lot of carbon stored in the vegetation,” he said. “This makes it a very important carbon sink, globally. It’s easy for scientists to predict how much carbon gets taken up by these trees every year because we know that the environment during the spring, summer and fall is pretty conducive to photosynthesis.”

However, with far less vegetation in western landscapes, less carbon is stored in drylands. Water availability is inconsistent and unpredictable, and the amount of carbon western vegetation can take up each year varies significantly. In drought years, little carbon may be absorbed at all.

“Studies show dryland ecosystems in particular are really important for determining how much carbon gets taken up by the whole Earth’s surface globally,” Kannenberg said. “Not because they take up a ton of carbon, but because they’re so inconsistent over time. Understanding photosynthesis and carbon storage in these dryland ecosystems is important, even though it might not look like there’s a ton of carbon stored in the vegetation on the landscape.”

Kannenberg said there are various management actions available to help mitigate some of the current impacts and prepare for those to come, because as the planet gets hotter, the atmosphere gets drier. In many regions, like the southwestern U.S., which are already very dry, feedback loops warm the air and dry the atmosphere, which in turn will accelerate future drought events.

“Historically, megadroughts are a rare, rare thing,” he said. “But there have been a number of them throughout time, and they’re going to get more frequent and more severe in the future.”



Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.