• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Brain cerebellum can shape cognition

Bioengineer by Bioengineer
April 4, 2024
in Health
Reading Time: 3 mins read
0
Andreea Bostan, Ph.D.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

If you reward a monkey with some juice, it will learn which hand to move in response to a specific visual cue – but only if the cerebellum is functioning properly. So say neuroscientists at the University of Pittsburgh School of Medicine and Columbia University, who recently published findings in Nature Communications that show the brain region plays a crucial role in reward-based learning.

Andreea Bostan, Ph.D.

Credit: Andreea Bostan

If you reward a monkey with some juice, it will learn which hand to move in response to a specific visual cue – but only if the cerebellum is functioning properly. So say neuroscientists at the University of Pittsburgh School of Medicine and Columbia University, who recently published findings in Nature Communications that show the brain region plays a crucial role in reward-based learning.

The cerebellum, which lies at the base of the skull behind the junction of the larger cerebrum and spinal cord, is well known for its role in regulating movement, balance and coordination, said co-lead investigator Andreea Bostan, Ph.D., research assistant professor in Pitt’s Department of Neurobiology. Although it accounts for about 10 percent of the brain’s mass, the cerebellum contains nearly 80 percent of the brain’s neurons.

“A longstanding assumption about cerebellar function has been that it only controls how we move. However, we now know that there are parts of the cerebellum that are connected and appear to have evolved along with areas of the cerebrum that control how we think,” Bostan said. “Because the cerebellum uses information about errors to gradually refine movement, another assumption has been that it likely contributes to cognitive functions in a similar way.”

To better understand the role of the cerebellum in cognition, members of the team trained monkeys to move either their left or right hand depending on what image they see on a screen. They get a sip of juice if they act correctly, eventually learning to associate specific visual cues with the appropriate movement to get a reward.

The research team identified the portion of the cerebellum that is interconnected with a region of the prefrontal cortex known to be involved in the learning new visuomotor associations. In a previous study, co-lead investigator Naveen Sendhilnathan, Ph.D., of Columbia University showed that in this posterior lateral region of the cerebellum, the activity of neurons called Purkinje cells changes to reflect the process of learning visuomotor associations according to reward outcomes. To find out if this region contributes to learning, monkeys received before performing the tasks either a saline placebo or a drug that temporarily blocked the activity of the posterior lateral cerebellum.

When presented with a symbol that they had already learned to associate with a certain movement, the monkeys correctly performed the task. If given saline, the monkeys could learn a novel visual-motor association after 50-70 tries. But when they got the blocking agent, they struggled to learn the new association, even if the same symbol was repeatedly shown until they got it right and were rewarded.

So “when you inactivate this cerebellar region, you impair new learning,” Bostan said. “It’s much slower, happens over many more trials, and the performance does not get to the same level. This is a concrete example of the cerebellum using reward information to shape cognitive function in primates.”

She added that posterior lateral cerebellum inactivation didn’t cause changes in how the movements were performed, and inactivation of other cerebellar regions did not impair learning.

“Our research provides clear evidence that the cerebellum is not only important for learning how to perform skillful actions, but also for learning which actions are most valuable in certain situations,” Bostan said. “It helps explain some of the non-motor difficulties in people with cerebellar disorders.”

The study team included Michael E. Goldberg, M.D., of Columbia University, and Peter L. Strick, Ph.D., of the University of Pittsburgh Department of Neurobiology.

This work was supported by the Keck, Zegar Family, and Dana foundations; National Eye Institute grants R24 EY-015634, R21 EY-020631, R01EY-017039, and P30 EY-019007; NIH Office of the Director grant P40OD010996; and National Institute of Neurological Disorders and Stroke grant R01NS113078.



Journal

Nature Communications

DOI

10.1038/s41467-024-46281-0

Article Title

A cerebro-cerebellar network for learning visuomotor associations

Article Publication Date

21-Mar-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Phospholipid Scramblases Drive Tumor Growth Via PS

November 6, 2025

Parents’ Role in Problem-Solving Education for Toddlers

November 6, 2025

One Health: Tackling Zoonoses in Resource-Limited Areas

November 6, 2025

International Research Team Wins €10 Million ERC Synergy Grant to Pioneer Breakthroughs in Drug Delivery

November 6, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Bonding Strengths: Hydroxyapatite Coated Gutta Percha Insights

Phospholipid Scramblases Drive Tumor Growth Via PS

Estrogen Receptor Protects Hippocampal Neurons from Amyloid β

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.