• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Ancient ocean oxygenation timeline revealed

Bioengineer by Bioengineer
April 4, 2024
in Chemistry
Reading Time: 3 mins read
0
Paleozoic Sedimentary Rock
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New study introduces a pioneering application of dolomite U-Pb geochronology, shedding new light on the evolution of ancient marine environments. By uncovering discrepancies in dolomite samples U-Pb ratios, the team developed a reliable proxy for reconstructing the levels of oxygen within ancient marine habitats, in which the first animals emerged and evolved. Their findings reveal a significant rise in marine oxygenation during the Late Paleozoic era (400 million years ago), hundreds of millions of years after the emergence of animal-life. These findings suggest that early-animals have evolved in oceans that were mostly oxygen-poor, and deepen our understanding of interactions between ecosystems and the evolution of complex life-forms. Understanding these relationships provides critical context for future observations of exoplanet’s atmospheres using the new generation of space-telescopes in search for extra-terrestrial life.

Paleozoic Sedimentary Rock

Credit: Uri Ryb

New study introduces a pioneering application of dolomite U-Pb geochronology, shedding new light on the evolution of ancient marine environments. By uncovering discrepancies in dolomite samples U-Pb ratios, the team developed a reliable proxy for reconstructing the levels of oxygen within ancient marine habitats, in which the first animals emerged and evolved. Their findings reveal a significant rise in marine oxygenation during the Late Paleozoic era (400 million years ago), hundreds of millions of years after the emergence of animal-life. These findings suggest that early-animals have evolved in oceans that were mostly oxygen-poor, and deepen our understanding of interactions between ecosystems and the evolution of complex life-forms. Understanding these relationships provides critical context for future observations of exoplanet’s atmospheres using the new generation of space-telescopes in search for extra-terrestrial life.

Dr. Uri Ryb and Dr. Michal Ben-Israel from the Institute of Earth Sciences at the Hebrew University, along with their collaborators, have made an important discovery in Earth sciences. Their study, published in Nature Communications, introduces a new approach to reconstruct the rise of oxygen in ancient marine environments using U and Pb measurements in dolomite rocks spanning the last 1.2 billion years.

Scientists commonly estimated the oxygen levels in ancient oceans from the composition of ‘redox sensitive’ elements preserved in ancient sedimentary rocks. But, these compositions can be easily altered in the course of geological history. The team overcame this challenge by developing a new approach that uses dolomite U-Pb dating to detect signals of oxygenation that are resistant to such alteration, giving us an unbiased perspective on marine oxygenation dynamics.

Their record indicates a dramatic increase in the oxygenation of the oceans during the Late Paleozoic era, hundreds of millions of years after the emergence of the first animals. This aligns with other evidence indicating the oxygenation of the ocean at the same time, support the hypothesis that animals have evolved in oceans that were mostly oxygen-limited, and suggests that changes in ocean oxygen were driven by evolution.

According to Dr. Ryb, these discoveries not only enhance our understanding of ancient Earth ecosystems but also have implications for the search of extra-terrestrial life. “Revealing the dynamics between evolution and oxygen levels in early Earth environments can put observations on the atmospheric composition of exoplanets that now become available through the new generation of space telescopes in context. Specifically, suggesting that low levels of oxygen are sufficient for complex life-forms to thrive.”



Journal

Nature Communications

DOI

10.1038/s41467-024-46660-7

Method of Research

Observational study

Subject of Research

Not applicable

Article Title

Late Paleozoic oxygenation of marine environments supported by dolomite U-Pb dating

Article Publication Date

3-Apr-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.