• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

How whale nerves survive huge stretching during feeding

Bioengineer by Bioengineer
February 16, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
Loading video…

Credit: Margo Lillie

When rorqual whales eat, they open their mouths and lunge. Their tongues invert as their mouths take in a huge volume of water and prey. In the process, nerves running through the ventral groove blubber along the floor of the whales' mouths stretch to more than double their length and then recoil again without suffering any damage in the process. Now, researchers reporting in Current Biology on February 16 have discovered that the secret to that stretch is not one but two layers of waviness.

"Waviness in nerves has been known for a long time, and it's widely believed that when a nerve is lengthened in use, the inner parts simply straighten out without getting longer, even though from the outside it can look like the whole thing is stretching," says Margo Lillie of the University of British Columbia. "What we found is that it is not always so simple–at least not in some whale nerves when physiological use requires very large changes in length."

The trouble is that folding a nerve can cause problems too. That's because bending or folding a nerve also involves a big and potentially damaging stretch. To get around this, Lillie and her colleagues show, the whales' nerves are wavy at two length scales. The large-scale waviness allows the nerves to elongate with body movement. Smaller-scale waviness gives the nerves the extra slack they need to go around tight folds without suffering damage.

Lillie says the waviness of the nerves was obvious from the time she first looked at one through a microscope. "Waviness in nerves per se isn't surprising, but we saw what appeared to be tight hairpin turns in the tissue that we thought couldn't be right–nerves shouldn't be able to bend so tightly," she says. "We realized that we did not understand the geometry of how they folded into a relatively short nerve between feeding lunges, so we set out to identify the full 3D morphology of the nerves and link that with the way they responded to elongation when we pulled on them in the lab."

The researchers turned to micro-CT scanning and tests of nerve mechanics. They scanned six intact, formalin-fixed nerves, plus one nerve in which the outer sheath was removed after fixation, in all, to reveal the two layers of waviness.

Each nerve has an outer sheath surrounding many nerve fascicles bundled together into an inner core, Lillie explains. Their studies showed that the prevailing shape adopted by the nerve core when recoiled is that of a sine-generated curve, a family of waveforms they liken to a meandering river. That regular sine-generated shape helps to reduce strain when the nerves bend and recoil.

Next, they examined the inner nerve structure to find that small-scale fascicle waviness was generally lower on the outside of a core bend and higher on the inside. "This made sense from the engineering theory of bending strain, which tells us that when a rod is bent, the material on the outside is stretched and on the inside compressed," Lillie says.

According to their calculations, some of the fascicles would need to stretch by more than 60% around a bend, enough to cause nerve damage. Damage doesn't occur because the waviness gives each fascicle the slack it needs to make even the tightest bend without stretching too far.

Lillie says next steps include looking at nerves from other tissues in other organisms that have to elongate substantially, to find out whether they stretch without damage in the same way or whether, perhaps, through the course of evolution, they've found another solution to the same problem.

###

This work was supported by Discovery Grants from the Natural Sciences and Engineering Research Council.

Current Biology, Lillie et al.: "Two Levels of Waviness Are Necessary to Package the Highly Extensible Nerves in Rorqual Whales" http://www.cell.com/current-biology/fulltext/S0960-9822(17)30007-6

Current Biology (@CurrentBiology, published by Cell Press, is a bimonthly journal that features papers across all areas of biology. Current Biology strives to foster communication across fields of biology, both by publishing important findings of general interest and through highly accessible front matter for non-specialists. Visit: http://www.cell.com/current-biology. To receive Cell Press media alerts, contact [email protected].

Media Contact

Joseph Caputo
[email protected]
617-397-2802
@CellPressNews

http://www.cellpress.com

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Exploring Non-Cavity Modes in Micropillar Bragg Microcavities

November 2, 2025

Mind Mapping Enhances Nursing Students’ Stress Relief and Performance

November 2, 2025

New Guidelines for Managing Thrombosis in Burn Patients

November 2, 2025

Compact DAC Leveraging Optical Kerr Effect Innovations

November 2, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Non-Cavity Modes in Micropillar Bragg Microcavities

Mind Mapping Enhances Nursing Students’ Stress Relief and Performance

New Guidelines for Managing Thrombosis in Burn Patients

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.