• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New geological study: Scandinavia was born in Greenland

Bioengineer by Bioengineer
March 21, 2024
in Chemistry
Reading Time: 4 mins read
0
Finnish outcrop
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a Finnish outcrop nestled between some of Northern Europe’s oldest mountains, researchers have found traces of a previously hidden part of Earth’s crust that points more than three billion years back in time and north towards Greenland.

Finnish outcrop

Credit: Andreas Petersson

In a Finnish outcrop nestled between some of Northern Europe’s oldest mountains, researchers have found traces of a previously hidden part of Earth’s crust that points more than three billion years back in time and north towards Greenland.

These traces were found in the mineral zircon, which after chemical analyses, indicated to researchers from the Department of Geosciences and Natural Resource Management that the “foundation” upon which Denmark and Scandinavia rest, was probably ‘born’ from Greenland approximately 3.75 billion years ago.

“Our data suggest that the oldest part of Earth’s crust beneath Scandinavia originates in Greenland and is about 250 million years older than we previously thought,” says Professor Tod Waight, a geologist at the Department of Geosciences and Natural Resource Management.

The researchers’ study of the zircon showed that, in several ways, its chemical fingerprint matches those of some of the oldest rocks on the planet found in West Greenland’s North Atlantic Craton.

“The zircon crystals we found in river sand and rocks from Finland have signatures that point towards them being much older than anything ever found in Scandinavia, while matching the age of Greenlandic rock samples. At the same time, the results of three independent isotope analyses confirm that Scandinavia’s bedrock was most likely linked to Greenland,” says Department of Geosciences and Natural Resource Management researcher Andreas Petersson.

A water world without oxygen

Denmark, Sweden, Norway and Finland rest atop a part of Earth’s crust known as the Fennoscandian Shield, or the Baltic Shield. The researchers believe that it broke away from Greenland as a “seed” and shifted for hundreds of millions of years until it “took root” where Finland is today.

Here, the plate grew as new geological material accumulated around it, until it became Scandinavia. At the time of the crust’s detachment from Greenland, the planet looked very different than today.

“Earth was probably a watery planet, like in the movie Waterworld, but without any oxygen in the atmosphere and without emergent crust. But, because that’s so far back in time, we can’t be really be sure about what it actually looked like,” says Tod Waight. 

According to the researchers, the fact that Earth even has a continental crust composed of granite is quite special when they look out into space and compare it with other planets in our galactic neighborhood.

“This is unique in our solar system. And, evidence of liquid water and a granite crust are key factors when trying to identify habitable exoplanets and the possibility of life beyond Earth,” explains Andreas Petersson.

Continents are the key to life

The new study adds pieces to a primordial continental puzzle that began long before life on Earth truly blossomed, but which has largely paved the way for both human and animal life.

“Understanding how continents formed helps us understand why ours is the only planet in the solar system with life on it. Because without fixed continents and water in between them, we wouldn’t be here. Indeed, continents influence both ocean currents and climate, which are crucial for life on Earth,” says Andreas Petersson.

Furthermore, the new study contributes to a growing number of studies which reject the means used thus far to calculate how continents have grown – especially during the first billion years of Earth’s history.

“The most commonly used models assume that Earth’s continental crust began to form when the planet was formed, about 4.6 billion years ago. Instead, our and several other recent studies suggest that the chemical signatures showing growth of the continental crust can only be identified about a billion years later. This means that we may need to revise much of what we thought about how early continents evolved,” says Professor Waight. 

At the same time, results of the study add to previous research that found similar “seeds” from ancient crusts in other parts of the world.

“Our study provides us with another important clue in the mystery of how continents formed and spread across Earth – especially in the case of the Fennoscandian Shield. But there is still plenty that we don’t know. In Australia, South Africa and India, for example, similar seeds have been found, but we’re unsure of whether they all come from the same “birthplace”, or whether they originated independently of one another in several places on Earth. This is something that we would like to investigate more using the method we used in this study,” concludes Professor Waight.

 

About the study

  • The study demonstrates that the oldest part of Earth’s crust beneath Scandinavia comes from Greenland and is about 250 million years older than once thought.
  • Therefore, Denmark and Scandinavia’s geologic foundation was most likely connected to Greenland approximately 3.75 billion years ago.
  • The researchers analysed zircons from modern river sand and rock samples from the remote Pudasjärvi and Suomujärvi regions of Finland, whose geological origins have been little studied.
  • The zircon crystals found in the Finnish river sand originally crystallized in granitic magmas deep within the crust. These granites were then lifted to the surface and eroded to eventually form sand.
  • The researchers used isotopic compositions of lead, hafnium and oxygen to trace the chemical fingerprint from the Fennoscandian Shield back to Greenland. 
  • The study has been published in the scientific journal Geology.

 

Contact:

Tod Waight
Professor
Department of Geosciences and Natural Resource Management (Geology section)
University of Copenhagen
[email protected]

Andreas Petersson
Researcher
Department of Geosciences and Natural Resource Management (Geology section)
University of Copenhagen
[email protected]

Michael Skov Jensen
Journalist and team coordinator
The Faculty of Science
University of Copenhagen
[email protected]
+ 45 93 56 58 97

 



Journal

Geology

DOI

10.1130/G51658.1

Article Title

An Eoarchean continental nucleus for the Fennoscandian Shield and a link to the North Atlantic craton

Article Publication Date

28-Dec-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.