• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, July 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Revolutionizing field phenotyping: A novel glare correction technique using polarized light

Bioengineer by Bioengineer
March 19, 2024
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Amidst challenges like a booming global population and diminishing arable land, plant phenotyping offers a way to automate agriculture and improve crop diagnostics. However, translating the precision of controlled-environment phenotyping to field conditions remains a hurdle, particularly in accurately measuring leaf color due to sunlight glare. Existing solutions, ranging from light scattering simulations to 3D sensor fusion, often require complex, time-consuming, or impractical methods.

Figure 1:(a)

Credit: Plant Phenomics

Amidst challenges like a booming global population and diminishing arable land, plant phenotyping offers a way to automate agriculture and improve crop diagnostics. However, translating the precision of controlled-environment phenotyping to field conditions remains a hurdle, particularly in accurately measuring leaf color due to sunlight glare. Existing solutions, ranging from light scattering simulations to 3D sensor fusion, often require complex, time-consuming, or impractical methods.

In March 2024, Plant Phenomics published a research article entitled by “Mitigating Illumination-, Leaf-, and View-Angle Dependencies in Hyperspectral Imaging Using Polarimetry”. This research aims to develop a novel, single-frame glare color correction technique utilizing polarized BRDF models and polarization-sensitive measurements, potentially revolutionizing field phenotyping by addressing the persistent challenge of glare without the need for complex or time-intensive methods.

Initially, pBRDF measurements were performed on two B73 maize plants using SCATMECH models at a wavelength of 550nm, which provided the basis for the creation of a generalized library of mmBRDF models for maize leaves. This foundational step was followed by correction model simulations, where the model processed uncorrected reflectivities and Stokes parameters, and showed that increasing polarisation led to a decrease in the perceived value of the parameter γ. This suggested a potential for correcting high DoLP and erroneous γ values, despite challenges in areas of retroreflection.

Validation of this correction model involved spectral ground truth measurements across a field and comparison between corrected and uncorrected Regions of Interest (ROIs) from low and high DoLP areas. This process confirmed the uniformity of plant behaviour across the field and over time, supporting the assumption of the model. The field trial data also showed that images taken at different times of day varied in their degree of polarization, with the correction model significantly reducing the mean square error (MSE) and standard deviation of the calculated indices, GNDVI and RERR, by significant factors.

The performance of the model was visually and statistically validated using spectropolarimetric image data from a field trial, showing a significant improvement in the accuracy of phenotypic imaging under varying conditions. The error and variance of the image data were significantly reduced, confirming the spectral invariance hypothesis and suggesting the potential applicability of the correction network across different two-band metrics. The research concluded with promising results, indicating that polarimetry could play a crucial role in enhancing the capabilities of multi- and hyperspectral sensor systems for high-throughput phenotyping applications in the field. Future work will focus on extending the model to different maize varieties, assessing the impact of varying weather conditions, and expanding the library of mmBRDF and correction models for broader agricultural applications.

###

References

Authors

Daniel Krafft1,4*†, Clifton G. Scarboro1,4, William Hsieh1, Colleen Doherty2,4†, Peter Balint-Kurti3,4, and Michael Kudenov1,4

†These authors contributed equally to this work.

Affiliations

1Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, U.S.A.

2Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, U.S.A.

3Department of Plant and Microbial Biology, North Carolina State University, Raleigh, U.S.A.

4NC Plant Sciences Initiative, North Carolina State University, Raleigh, U.S.A.

About  Daniel Krafft

PhD candidate (exp. grad. summer 2024). His dissertation is on Bidirectional Reflectance Correction using Polarization in Maize Remote Sensing.



Journal

Plant Phenomics

DOI

10.34133/plantphenomics.0157

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Mitigating Illumination-, Leaf-, and View-Angle Dependencies in Hyperspectral Imaging Using Polarimetry

Article Publication Date

1-Mar-2024

COI Statement

The authors declare that they have no competing interests.

Share12Tweet7Share2ShareShareShare1

Related Posts

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 26, 2025
Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 26, 2025

Root N-Hydroxypipecolic Acid Circuit Boosts Arabidopsis Immunity

July 26, 2025

Single-Cell Screens Reveal Ebola Infection Regulators

July 26, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    48 shares
    Share 19 Tweet 12
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

Epicardial Fat: Protector or Threat to Heart Health?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.