• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Crucial insights into animal defense mechanisms and tradeoffs revealed

Bioengineer by Bioengineer
March 13, 2024
in Biology
Reading Time: 2 mins read
0
Nematostella vectensis
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New study reveals insights into predator-prey dynamics in the animal kingdom, focusing on sea anemones. The surprising discovery of a native anemone population lacking the Nv1 neurotoxin led to an investigation into its impact on defending against grass shrimp, a native predator. Anemones without Nv1 showed weakened defensive abilities, while the neurotoxin, when present, attracted mummichog fish, natural predators of grass shrimp. This research enhances our understanding of marine ecosystems and the intricate balance of predator-prey interactions and tradeoffs.

Nematostella vectensis

Credit: Yehu Moran

New study reveals insights into predator-prey dynamics in the animal kingdom, focusing on sea anemones. The surprising discovery of a native anemone population lacking the Nv1 neurotoxin led to an investigation into its impact on defending against grass shrimp, a native predator. Anemones without Nv1 showed weakened defensive abilities, while the neurotoxin, when present, attracted mummichog fish, natural predators of grass shrimp. This research enhances our understanding of marine ecosystems and the intricate balance of predator-prey interactions and tradeoffs.

A new study led by Prof. Yehu Moran from the Faculty of Sciences at Hebrew University delves into the complex world of predator-prey interactions in the animal kingdom, with a focus on the starlet sea anemone Nematostella vectensis, a distant relative of corals and jellyfish. The research introduces an innovative genetic manipulation tool capable of significantly reducing both RNA and protein levels of Nv1, a major neurotoxin in these marine organisms.

One of the study’s unexpected findings was the identification of a native anemone population lacking the Nv1 neurotoxin. This discovery prompted an in-depth exploration of the consequences on the anemones’ defensive capabilities against grass shrimp, its native predator. The results reveal that anemones without the neurotoxin exhibit a noticeable reduction in defensive capabilities, exposing a three-level interaction within an ecosystem involving three different organisms at the molecular level.

The neurotoxin, in its absence, was found to play an indirect defensive role by attracting mummichog fish, known predators of grass shrimp. This intricate predator-prey dynamic sheds light on the interconnected relationships within marine ecosystems.

The study’s significance lies not only in advancing our understanding of predator-prey relationships but also in uncovering a captivating evolutionary tradeoff. Prof. Yehu Moran emphasizes, “The reduction of Nv1 levels in the anemones not only impacts their defensive abilities but also leads to faster growth and increased rates of sexual and asexual reproduction.”

The research introduces a pioneering genetic manipulation tool that allows researchers to explore the direct and indirect effects of toxin genotypes on predator-prey dynamics. These findings have broader implications for marine ecology, potentially informing conservation efforts and contributing to a more nuanced understanding of the delicate balance within ecosystems.



Journal

Science Advances

DOI

10.1101/2023.07.24.550294

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Venom tradeoff shapes interspecific interactions, physiology and reproduction

Article Publication Date

13-Mar-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Overcoming Batch Effects in Single-Cell RNA-seq Datasets

Overcoming Batch Effects in Single-Cell RNA-seq Datasets

November 2, 2025
Unraveling CpG Island Methylation Through Read Bias Analysis

Unraveling CpG Island Methylation Through Read Bias Analysis

November 2, 2025

Unraveling Resistance Genes in Photorhabdus Bacteria

November 2, 2025

Trypanosoma cruzi: Metapopulation Dynamics in Human Landscapes

November 1, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1295 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Asthma Treatments: Fluticasone vs. Beclometasone

School Nurses’ Impact on Pediatric Obesity in Saudi Arabia

Overcoming Batch Effects in Single-Cell RNA-seq Datasets

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.