• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Crucial insights into animal defense mechanisms and tradeoffs revealed

Bioengineer by Bioengineer
March 13, 2024
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New study reveals insights into predator-prey dynamics in the animal kingdom, focusing on sea anemones. The surprising discovery of a native anemone population lacking the Nv1 neurotoxin led to an investigation into its impact on defending against grass shrimp, a native predator. Anemones without Nv1 showed weakened defensive abilities, while the neurotoxin, when present, attracted mummichog fish, natural predators of grass shrimp. This research enhances our understanding of marine ecosystems and the intricate balance of predator-prey interactions and tradeoffs.

Nematostella vectensis

Credit: Yehu Moran

New study reveals insights into predator-prey dynamics in the animal kingdom, focusing on sea anemones. The surprising discovery of a native anemone population lacking the Nv1 neurotoxin led to an investigation into its impact on defending against grass shrimp, a native predator. Anemones without Nv1 showed weakened defensive abilities, while the neurotoxin, when present, attracted mummichog fish, natural predators of grass shrimp. This research enhances our understanding of marine ecosystems and the intricate balance of predator-prey interactions and tradeoffs.

A new study led by Prof. Yehu Moran from the Faculty of Sciences at Hebrew University delves into the complex world of predator-prey interactions in the animal kingdom, with a focus on the starlet sea anemone Nematostella vectensis, a distant relative of corals and jellyfish. The research introduces an innovative genetic manipulation tool capable of significantly reducing both RNA and protein levels of Nv1, a major neurotoxin in these marine organisms.

One of the study’s unexpected findings was the identification of a native anemone population lacking the Nv1 neurotoxin. This discovery prompted an in-depth exploration of the consequences on the anemones’ defensive capabilities against grass shrimp, its native predator. The results reveal that anemones without the neurotoxin exhibit a noticeable reduction in defensive capabilities, exposing a three-level interaction within an ecosystem involving three different organisms at the molecular level.

The neurotoxin, in its absence, was found to play an indirect defensive role by attracting mummichog fish, known predators of grass shrimp. This intricate predator-prey dynamic sheds light on the interconnected relationships within marine ecosystems.

The study’s significance lies not only in advancing our understanding of predator-prey relationships but also in uncovering a captivating evolutionary tradeoff. Prof. Yehu Moran emphasizes, “The reduction of Nv1 levels in the anemones not only impacts their defensive abilities but also leads to faster growth and increased rates of sexual and asexual reproduction.”

The research introduces a pioneering genetic manipulation tool that allows researchers to explore the direct and indirect effects of toxin genotypes on predator-prey dynamics. These findings have broader implications for marine ecology, potentially informing conservation efforts and contributing to a more nuanced understanding of the delicate balance within ecosystems.



Journal

Science Advances

DOI

10.1101/2023.07.24.550294

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Venom tradeoff shapes interspecific interactions, physiology and reproduction

Article Publication Date

13-Mar-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Tracer Lets Surgeons Visualize and Hear Prostate Cancer

Innovative Tracer Lets Surgeons Visualize and Hear Prostate Cancer

August 21, 2025
blank

Ume6 Complexes Shape Candida Biofilm Architecture

August 21, 2025

Think you can outsmart an island fox? Think again!

August 21, 2025

California’s dwarf Channel Island foxes have relatively larger brains than their bigger mainland gray fox cousins, revealing unique island-driven evolution

August 21, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Iran’s Parkinson’s Disease Registry: Key Findings Revealed

SLAS Technology Introduces AI-Enhanced Diagnostics and Advanced Laboratory Innovations

Chung-Ang University Researchers Develop Paper Electrode-Based Soft Robots That Crawl

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.