• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Flexible artificial intelligence optoelectronic sensors towards health monitoring

Bioengineer by Bioengineer
March 11, 2024
in Biology
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

From creating images, generating text, and enabling self-driving cars, the potential uses of artificial intelligence (AI) are vast and transformative. However, all this capability comes at a very high energy cost. For instance, estimates indicate that training OPEN AI’s popular GPT-3 model consumed over 1,287 MWh, enough to supply an average U.S. household for 120 years. This energy cost poses a substantial roadblock, particularly for using AI in large-scale applications like health monitoring where large amounts of critical health information are sent to centralized data centers for processing. This not only consumes a lot of energy but also raises concerns about sustainability, bandwidth overload, and communication delays.

The paper-based optoelectronic synaptic device

Credit: Takashi Ikuno from Tokyo University of Science

From creating images, generating text, and enabling self-driving cars, the potential uses of artificial intelligence (AI) are vast and transformative. However, all this capability comes at a very high energy cost. For instance, estimates indicate that training OPEN AI’s popular GPT-3 model consumed over 1,287 MWh, enough to supply an average U.S. household for 120 years. This energy cost poses a substantial roadblock, particularly for using AI in large-scale applications like health monitoring where large amounts of critical health information are sent to centralized data centers for processing. This not only consumes a lot of energy but also raises concerns about sustainability, bandwidth overload, and communication delays.

 

Achieving AI-based health monitoring and biological diagnosis requires a standalone sensor that operates independently without the need for constant connection to a central server. At the same time, the sensor must have a low power consumption for prolonged use, should be capable of handling the rapidly changing biological signals for real-time monitoring, be flexible enough to attach comfortably to the human body, and be easy to make and dispose of due to the need for frequent replacements for hygiene reasons.

 

Considering these criteria, researchers from Tokyo University of Science (TUS) led by Associate Professor Takashi Ikuno have developed a flexible paper-based sensor that operates like the human brain. Their findings were published online in the journal Advanced Electronic Materials on 22 February 2024.

 

“A paper-based optoelectronic synaptic device composed of nanocellulose and ZnO was developed for realizing physical reservoir computing. This device exhibits synaptic behavior and cognitive tasks at a suitable timescale for health monitoring,” says Dr. Ikuno.

 

In the human brain, information travels between networks of neurons through synapses. Each neuron can process information on its own, enabling the brain to handle multiple tasks at the same time. This ability for parallel processing makes the brain much more efficient compared to traditional computing systems. To mimic this capability, the researchers fabricated a photo-electronic artificial synapse device composed of gold electrodes on top of a 10 µm transparent film consisting of zinc oxide (ZnO) nanoparticles and cellulose nanofibers (CNFs).

The transparent film serves three main purposes. Firstly, it allows light to pass through, enabling it to handle optical input signals representing various biological information. Secondly, the cellulose nanofibers impart flexibility and can be easily disposed of by incineration. Thirdly, the ZnO nanoparticles are photoresponsive and generate a photocurrent when exposed to pulsed UV light and a constant voltage. This photocurrent mimics the responses transmitted by synapsis in the human brain, enabling the device to interpret and process biological information received from optical sensors.

 

Notably, the film was able to distinguish 4-bit input optical pulses and generate distinct currents in response to time-series optical input, with a rapid response time on the order of subseconds. This quick response is crucial for detecting sudden changes or abnormalities in health-related signals. Furthermore, when exposed to two successive light pulses, the electrical current response was stronger for the second pulse. This behavior termed post-potentiation facilitation contributes to short-term memory processes in the brain and enhances the ability of synapses to detect and respond to familiar patterns.

 

To test this, the researchers converted MNIST images, a dataset of handwritten digits, into 4-bit optical pulses. They then irradiated the film with these pulses and measured the current response. Using this data as input, a neural network was able to recognize handwritten numbers with an accuracy of 88%.

 

Remarkably, this handwritten-digit recognition capability remained unaffected even when the device was repeatedly bent and stretched up to 1,000 times, demonstrating its ruggedness and feasibility for repeated use. “This study highlights the potential of embedding semiconductor nanoparticles in flexible CNF films for use as flexible synaptic devices for PRC,” concludes Dr. Ikuno.

 

Let us hope that these advancements pave the way for wearable sensors in health monitoring applications!

 

***

 

Reference                     

Title of original paper: Disposable and Flexible Paper-Based Optoelectronic Synaptic Devices for Physical Reservoir Computing

Journal: Advanced Electronic Materials

DOI: https://doi.org/10.1002/aelm.202300749

 

About The Tokyo University of Science

Tokyo University of Science (TUS) is a well-known and respected university, and the largest science-specialized private research university in Japan, with four campuses in central Tokyo and its suburbs and in Hokkaido. Established in 1881, the university has continually contributed to Japan’s development in science through inculcating the love for science in researchers, technicians, and educators.

 

With a mission of “Creating science and technology for the harmonious development of nature, human beings, and society,” TUS has undertaken a wide range of research from basic to applied science. TUS has embraced a multidisciplinary approach to research and undertaken intensive study in some of today’s most vital fields. TUS is a meritocracy where the best in science is recognized and nurtured. It is the only private university in Japan that has produced a Nobel Prize winner and the only private university in Asia to produce Nobel Prize winners within the natural sciences field.

Website: https://www.tus.ac.jp/en/mediarelations/

 

About Associate Professor Takashi Ikuno from Tokyo University of Science

Takashi Ikuno received his Ph.D. degree from Osaka University, whereupon he worked at the Lawrence Berkeley National Laboratory and UC Berkeley, USA, as a postdoctoral researcher and later at Toyota Central R&D Labs as a senior researcher. He currently works as an Associate Professor in the Department of Applied Electronics at Tokyo University of Science (TUS), Japan. His research interests include developing electronic devices with nanocarbon and low-dimensional nanomaterials. He can be reached at tikuno(at sign)rs.tus.ac.jp.

Laboratory website

Official TUS website

 

 

Funding information

This work was partly supported by Japan Science and Technology Agency (JST) through the establishment of university fellowships to promote the advancement of science and technology innovation, under Grant Number JPMJFS2144.



Journal

Advanced Electronic Materials

DOI

10.1002/aelm.202300749

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Disposable and Flexible Paper-Based Optoelectronic Synaptic Devices for Physical Reservoir Computing

Article Publication Date

22-Feb-2024

COI Statement

The authors declare no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Think you can outsmart an island fox? Think again!

August 21, 2025
blank

California’s dwarf Channel Island foxes have relatively larger brains than their bigger mainland gray fox cousins, revealing unique island-driven evolution

August 21, 2025

Why Do Some People Age Faster? Study Identifies Key Genes Involved

August 21, 2025

Tidal Forces Spur the Rise of Urban Civilization in Southern Mesopotamia

August 20, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Laser Technique Simplifies Production of High-Performance Alloy Films

New Study Reveals 40% Decline in Leisure Reading Over Two Decades

TCF1 and LEF1 Sustain B-1a Cell Function

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.