• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Global-local path choice model: a new method to understand the walkability of cities

Bioengineer by Bioengineer
March 11, 2024
in Science News
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In many cities worldwide, the notion of walking as sustainable urban mobility is becoming increasingly popular. Improving the walkability of cities has many benefits, including improved health, reduced traffic, and consequently lower air pollution. To improve walkability, it is important to conduct a thorough analysis of what factors make cities more walkable.  

Global and Local Path Preferences Captured by the Global-Local Path Choice Model

Credit: Professor Yuki Oyama from Shibaura Institute of Technology

In many cities worldwide, the notion of walking as sustainable urban mobility is becoming increasingly popular. Improving the walkability of cities has many benefits, including improved health, reduced traffic, and consequently lower air pollution. To improve walkability, it is important to conduct a thorough analysis of what factors make cities more walkable.  

One essential aspect in analyzing walkability is understanding traveler behavior. Before and during their journey, various factors can influence their path choices. For example, travelers can consider the most efficient route before starting but could encounter unexpected events necessitating route changes. Factors like surface conditions, traffic lights or a more scenic view can also influence their decisions. As such, the path choice of travelers can be categorized into two routing mechanisms – global path preferences and local responses to the perceived attributes of the path. While global preferences like the total distance can play a role, pedestrians often prioritize locally perceived attributes. Thus, it is necessary to understand to what extent and which attributes influence the global and local preferences of travelers and related design policies.

To address this, Associate Professor Yuki Oyama from the Department of Civil Engineering at Shibaura Institute of Technology, Japan, developed a novel network path choice model, called the global-local path choice model. “Traditional route choice models typically assume that travelers mainly have global preferences such as using the shortest path. However, in reality, travelers locally perceive and respond to different attributes of a path and capturing this behavior has been challenging. The present model successfully analyses this behavior,” explains Dr. Oyama.  The details of the model were outlined in a study published in the journal Transportation Research Part A on February 13, 2024.

Central to this innovative model is a reward decomposition approach integrated into a link-based (Markovian) path choice model, which considers path choice as sequential link choices towards the destination in a Markovian way. In this approach, the Markovian reward function is broken down into a global utility, which is a function of attributes that can be globally perceived from anywhere, and a local utility, a function of attributes that can be only locally perceived from the current state. This enables empirical analyses of the influence of different attributes on the local and global path choices of travelers.

Dr. Oyama applied this model to study a real pedestrian network using GPS data collected from pedestrian movements. In this analysis, the green view index (GVI), which represents the greenery around streets, extracted from Google Street View images, was used as a locally perceived attribute. The idea was to study how visual street quality influences the decisions of pedestrians. The results revealed that pedestrians locally perceived and reacted to GVI values, rather than having pre-trip global perceptions of the values. Moreover, results also revealed the importance of the location of interventions like increasing greenery and showed that interventions should be placed on streets that are directly connected to the most walked-on streets.

Highlighting the potential applications of the study, Dr. Oyama remarks, “This method can be used as a decision-making tool for the design and control of a transportation network as well as visual information provision for route guidance. Moreover, beyond travelers in transportation networks, this model can contribute to elucidating the routing behavior of other agents like animals.”

Overall, this study provides a new way for analyzing walkability from the viewpoint of pedestrians’ local responses to the environment, paving the way for more walkable and environment-friendly cities!

 

***

 

Reference

DOI: https://doi.org/10.1016/j.tra.2024.103998

 

About Shibaura Institute of Technology (SIT), Japan
Shibaura Institute of Technology (SIT) is a private university with campuses in Tokyo and Saitama. Since the establishment of its predecessor, Tokyo Higher School of Industry and Commerce, in 1927, it has maintained “learning through practice” as its philosophy in the education of engineers. SIT was the only private science and engineering university selected for the Top Global University Project sponsored by the Ministry of Education, Culture, Sports, Science and Technology and will receive support from the ministry for 10 years starting from the 2014 academic year. Its motto, “Nurturing engineers who learn from society and contribute to society,” reflects its mission of fostering scientists and engineers who can contribute to the sustainable growth of the world by exposing their over 8,000 students to culturally diverse environments, where they learn to cope, collaborate, and relate with fellow students from around the world.

Website: https://www.shibaura-it.ac.jp/en/

 

About Associate Professor Yuki Oyama from SIT, Japan
Yuki Oyama is currently an Associate Professor at the Department of Civil Engineering at Shibaura Institute of Technology. He obtained his bachelor’s and master’s in engineering from the University of Tokyo in 2012 and 2014, respectively, followed by a Ph.D. in 2017. At SIT he currently leads the Activity Landscape Design (ActScape) Lab. In 2017, he received the Kometani-Sasaki Award for his PhD thesis from Institute of Systems Science Research, Japan. His main research interest is developing new methodologies for modelling and analyzing agents’ behavior in networks, particularly, urban transportation networks, such as congested transport networks, pedestrian activity networks, and sustainable transport networks.

 

Funding Information
This work was financially supported by JSPS, Japan KAKENHI Grant numbers 20K14899 and 23H01586. The data for the case study was collected through a Probe Person survey, a complementary survey of the Sixth Tokyo Metropolitan Region Person Trip Survey.



Journal

Transportation Research Part A General

DOI

10.1016/j.tra.2024.103998

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

Article Title

Global path preference and local response: A reward decomposition approach for network path choice analysis in the presence of visually perceived attributes

Article Publication Date

13-Feb-2024

COI Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Revealing the Advantages of Nature-Inspired Construction

August 20, 2025
blank

Study Finds Few Depressed Teens Receive Treatment

August 20, 2025

Epigenetic Noise: The Overlooked Mechanism Driving Cellular Identity Changes

August 20, 2025

New “In and Out” Mechanism Uncovers How Carbon Dioxide Interacts with Water’s Surface

August 20, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revealing the Advantages of Nature-Inspired Construction

Study Finds Few Depressed Teens Receive Treatment

Epigenetic Noise: The Overlooked Mechanism Driving Cellular Identity Changes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.