• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Electrolyte cation types control electrochemical reactions on an electrode surface

Bioengineer by Bioengineer
March 5, 2024
in Chemistry
Reading Time: 3 mins read
0
Inner- and outer-sphere pathways dependent on electrolyte cations for oxygen reduction reaction
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

1. An international research group consisting of NIMS and the Finnish University of Jyväskylä has discovered through its electrode-electrolyte system research that electron and proton (i.e., hydrogen ion) transfer mechanisms during oxygen reduction reactions (ORRs) on electrode surfaces vary depending on the types of cations dissolved in the electrolytic solution. These results suggest that the energy conversion efficiencies and selectivity of electrochemical systems (e.g., fuel cells and water electrolysis hydrogen production systems) can be improved by selecting optimal reaction pathways and that this could be achieved without using expensive electrode materials.

Inner- and outer-sphere pathways dependent on electrolyte cations for oxygen reduction reaction

Credit: Ken Sakaushi, Tomoaki Kumeda
National Institute for Materials Science

1. An international research group consisting of NIMS and the Finnish University of Jyväskylä has discovered through its electrode-electrolyte system research that electron and proton (i.e., hydrogen ion) transfer mechanisms during oxygen reduction reactions (ORRs) on electrode surfaces vary depending on the types of cations dissolved in the electrolytic solution. These results suggest that the energy conversion efficiencies and selectivity of electrochemical systems (e.g., fuel cells and water electrolysis hydrogen production systems) can be improved by selecting optimal reaction pathways and that this could be achieved without using expensive electrode materials.

2. Most electrochemical reactions take place at the interface between an electrode and an electrolytic solution. It is therefore important to understand how the structures and characteristics of electrodes and electrolytes interact in controlling electrochemical reaction rates at their interfaces and in ascertaining reaction mechanisms. It had been known that ORR rates in fuel cells are influenced by the types and concentrations of ions dissolved in their electrolytes. However, detailed ORR pathways and how electrolytic ions influence these pathways had been unknown.

3. This research group recently investigated ORRs taking place at the interface between an alkaline electrolyte and a platinum electrode and discovered for the first time that electron and proton transfer mechanisms during ORRs vary depending on the types of cations dissolved in the electrolyte. Two types of ORR pathways take shape on the surface of a platinum electrode, each yielding different ORR products: inner-sphere (IS) and outer-sphere (OS) ORR pathways. In the IS ORR pathway, oxygen molecules in the electrolyte adsorb to the electrode surface, accepting an electron from the electrode. The molecular oxygen intermediates are then dissociated into atomic oxygen intermediates. By contrast, in the OS pathway, oxygen molecules accept electrons from the electrode at locations a slight distance from the electrode surface. In-depth analyses using high-precision electrochemical measurements and first-principles calculations revealed that the OS pathway tends to occur when the electrolyte contains lithium ions, while the IS pathway is more common with the electrolyte containing potassium and sodium ions—consistent with previously published findings. These differences in ORR pathways may be attributed to the ways in which these electrolytic cations interact with the electrode surface, water molecules and ORR intermediates.

4. This research found that ORR mechanisms can be controlled by changing electrolytic compositions in addition to the traditional approach of changing electrode material compositions. This discovery suggests that the energy conversion efficiency of electrocatalytic systems can be improved even without using expensive electrode materials. In addition, by improving the performance of both electrodes and electrolytes, it may be feasible to achieve even higher ORR efficiency and increase ORR pathway options.

***

5. This project was carried out by an international research group consisting of Tomoaki Kumeda (Research Fellow, International Center for Young Scientists (ICYS), NIMS), Ken Sakaushi (Principal Researcher, Research Center for Energy and Environmental Materials, NIMS) and the University of Jyväskylä.

6. This research was published in the online version of Angewandte Chemie International Edition, a journal of the German Chemical Society, on November 20, 2023.



Journal

Angewandte Chemie International Edition

DOI

10.1002/anie.202312841

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Cations Determine the Mechanism and Selectivity of Alkaline Oxygen Reduction Reaction on Pt(111)

Article Publication Date

20-Nov-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

From Wastewater to Fertile Ground: Chinese Researchers Achieve Dual Breakthroughs in Phosphorus Recycling

October 23, 2025
Innovative ‘Molecular Dam’ Prevents Energy Loss in Nanocrystals

Innovative ‘Molecular Dam’ Prevents Energy Loss in Nanocrystals

October 23, 2025

Physicists Explore Atomic Nuclei Using Innovative Molecule-Based Technique

October 23, 2025

Unlocking Smarter Devices and Safer Drugs: UH Crystals Expert Advances Crystal Formation Control

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1278 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    181 shares
    Share 72 Tweet 45
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Hip Fracture Care: Surgery and Mobility Insights

Health Workers’ Radiation Knowledge Influences Attitudes

Bat Flies’ Microbial Networks Vary by Host Specificity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.