• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Microbial comics: RNA as a common language, presented in extracellular speech-bubbles

Bioengineer by Bioengineer
February 27, 2024
in Biology
Reading Time: 3 mins read
0
Extracellular vesicles
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Single-celled organisms, such as bacteria and archaea, have developed many ways to communicate with each other. For example, they might use tiny so-called extracellular vesicles (EVs) – membrane-enveloped packages smaller than 200nm in diameter (0.0002mm). The organisms produce them by budding from their membrane into the surrounding space. These EVs can contain a variety of molecules such as enzymes, nutrients, RNA and even frag­ments of DNA. Though it is suspected that they play a key role in microbial communities, little is known about their function or how they are produced.

Extracellular vesicles

Credit: S. Erdmann/Max Planck Institute for Marine Microbiology

Single-celled organisms, such as bacteria and archaea, have developed many ways to communicate with each other. For example, they might use tiny so-called extracellular vesicles (EVs) – membrane-enveloped packages smaller than 200nm in diameter (0.0002mm). The organisms produce them by budding from their membrane into the surrounding space. These EVs can contain a variety of molecules such as enzymes, nutrients, RNA and even frag­ments of DNA. Though it is suspected that they play a key role in microbial communities, little is known about their function or how they are produced.

Speech balloons for RNA talk

In a study now published in the journal PNAS, Susanne Erdmann with her team at the Max Planck Institute for Marine Microbiology and collaborators from other institutions in Germany and Australia (see below), investigated EVs from microbes that thrive in extremely salty environments such as the Dead Sea, known as halophilic archaea or haloarchaea. They found that their EVs traffic RNA – nucleic acids that play a central role in protein synthesis and gene regulation – between cells. “Obviously, EVs can act as an RNA communication system between haloarchaea”, Erdmann explains. In particular, the EVs transported specific RNAs with the potential to regulate processes in a receiving cell. “We think that this represents a communication mechanism to regulate gene expression across a whole microbial population. One could say, RNA is their common language, and the EV is the speech balloon.”

A GTPase known from eukaryotic cells

The team around Erdmann also investigated how the haloarchaea produce these EVs. “We found a small GTPase – a class of enzymes serving as molecular switches or timers in many fundamental cellular processes – that was very similar to a GTPase in more complex cells”, reports first-author Joshua Mills, who conducted the study as party of his doctoral thesis. “That is quite astonishing, as GTPase-dependent vesicle formation was previously thought to be only carried out within eukaryotic cells, between the membrane-bound intracellular compartments. Our finding suggests that components of eukaryotic intracellular vesicle trafficking could have evolved much earlier in evolutionary history than previously assumed.”

“Few studies have investigated the role of EVs within the archaeal domain to date”, Erdmann adds. “Here we show that EVs in salt-loving archaea can transport an RNA cargo and thus help cells communicate with each other. Also, we reveal exciting new insights into the evolutionary development of this communication strategy. Our study provides the basis for further studies into the evolutionary relationships between prokaryotic and eukaryotic vesicle formation and might help solving the puzzle of the evolution of the eukaryotic cell.”



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2311321121

Article Title

Extracellular vesicle formation in Euryarchaeota is driven by a small GTPase

Article Publication Date

26-Feb-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.