• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers uncover new clues about links between parent age and congenital disorders

Bioengineer by Bioengineer
February 27, 2024
in Health
Reading Time: 3 mins read
0
Young father and old father
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new paper in Genome Biology and Evolution, published by Oxford University Press, finds that the link between paternal age and rare congenital disorders is more complex than scientists had previously thought. While researchers have long realized that older fathers are more likely to have children with bone and heart malformations, such as Achondroplasia, Apert, or Noonan syndrome or neurodevelopmental disorders, schizophrenia, and autism, new examination indicates that while the link between some pathogenic mutations increases with paternal age, others do not and may even occur in the father’s testis before sexual maturity.

Young father and old father

Credit: Irene Tiemann-Boege/ Genome Biology and Evolution

A new paper in Genome Biology and Evolution, published by Oxford University Press, finds that the link between paternal age and rare congenital disorders is more complex than scientists had previously thought. While researchers have long realized that older fathers are more likely to have children with bone and heart malformations, such as Achondroplasia, Apert, or Noonan syndrome or neurodevelopmental disorders, schizophrenia, and autism, new examination indicates that while the link between some pathogenic mutations increases with paternal age, others do not and may even occur in the father’s testis before sexual maturity.

Delayed fatherhood results in a higher risk of inheriting a new mutation that might result in a congenital disorder in the children. Fibroblast growth factor receptor 3 (FGFR3) is a protein in humans that is expressed in tissues including cartilage, and the brain, intestines, and kidneys.

Driver or selfish mutations, which can result in congenital disorders, are more common in the male germline, orders of magnitude higher than the estimated average human genome mutation rate per cell division per generation. These mutations are more common in the sperm of older men. Despite the importance of driver mutations in the male germline due to their high incidence and the increased frequency, as well as their potential pathogenic effects, researchers do not understand where the mutations really come from and why they are found so often. Do these mutations primarily propagate within the sexually mature germline, leading to an increased mutation burden in the population as men age? Or could driver mutations in sperm of young men already be much higher in numbers than assumed so far, with the risk of young dads having one or even more affected kids?

Researchers here collected sperm samples from anonymous doners at clinics in Austria and investigated the variant frequency for genetic mutations for ten different FGFR3 variants in men aged 23 to 59.

The investigators found that the FGFR3 variant associated with Achondroplasia, the most common form of short-limbed dwarfism, does increase with the father’s age. Another variant, this one associated with Thanatophoric dysplasia—a severe and usually fatal skeletal disorder in children characterized by a disproportionately small ribcage and extremely short limbs—also increased with paternal age. The researchers found that many other FGFR3 variants were unconnected to the father’s age. In particular, the variant associated with CATSHL (Camptodactyly-tall stature-scoliosis-hearing loss) syndrome was not more common in sperm of older men compared to younger men.

“Young dads also face a higher risk of having kids with pathogenic mutations, said the paper’s lead author, Irene Tiemann-Boege.

The paper, “Exploring FGFR3 mutations in the male germline: Implications for clonal germline expansions and parental age-related dysplasias,” is available (at midnight on February 27th) at https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evae015.

Direct correspondence to: 
Irene Tiemann-Boege
Institute of Biophysics
Johannes Kepler University
Gruberstrasse 40
4020 Linz, AUSTRIA
[email protected]

To request a copy of the study, please contact:
Daniel Luzer 
[email protected]



Journal

Genome Biology and Evolution

DOI

10.1093/gbe/evae015

Method of Research

Content analysis

Subject of Research

People

Article Title

Exploring FGFR3 mutations in the male germline: Implications for clonal germline expansions and parental age-related dysplasias

Article Publication Date

27-Feb-2024

COI Statement

N/A

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.