• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Membrane technology: Looking deep into smallest pores

Bioengineer by Bioengineer
February 21, 2024
in Biology
Reading Time: 4 mins read
0
IAMT doctoral researcher Minh Nhat Nguyen tested a membrane of vertically aligned carbon nanotubes. (Photo: IAMT, KIT)
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Clean drinking water is of vital importance to all people worldwide. Membranes are used to efficiently remove micropollutants, such as steroid hormones that are harmful to health and the environment. A very promising membrane material is made of vertically aligned carbon nanotubes (VaCNT). “This material is amazing – with small pores of 1.7 to 3.3 nanometers in diameter, a nearly perfect cylindrical shape, and small torsion,” says Professor Andrea Iris Schäfer, who heads KIT’s Institute for Advanced Membrane Technology (IAMT). “The nanotubes should have a highly adsorbing effect, but have a very low friction only.” Currently, pores are too large for effective retention, but smaller pores are not yet feasible technically.

IAMT doctoral researcher Minh Nhat Nguyen tested a membrane of vertically aligned carbon nanotubes. (Photo: IAMT, KIT)

Credit: IAMT, KIT

Clean drinking water is of vital importance to all people worldwide. Membranes are used to efficiently remove micropollutants, such as steroid hormones that are harmful to health and the environment. A very promising membrane material is made of vertically aligned carbon nanotubes (VaCNT). “This material is amazing – with small pores of 1.7 to 3.3 nanometers in diameter, a nearly perfect cylindrical shape, and small torsion,” says Professor Andrea Iris Schäfer, who heads KIT’s Institute for Advanced Membrane Technology (IAMT). “The nanotubes should have a highly adsorbing effect, but have a very low friction only.” Currently, pores are too large for effective retention, but smaller pores are not yet feasible technically.

 

Interplay of Forces

In experiments with steroid micropollutants, IAMT researchers studied why VaCNT membranes are perfect water filters. They used membranes produced by the Lawrence Livermore National Laboratory (LLNL) in Livermore (California, USA). The finding: The low adsorption of VaCNT, i.e. deposition on the surface, is desirable for highly selective membranes targeting special substances.

 

The study reveals that adsorption in membrane nanopores does not only depend on the adsorption surface and the limited mass transfer, but also on the interplay of hydrodynamic forces, friction, and the forces of attraction and repulsion at the liquid-wall interface. Highly water-permeable nanopores exhibit low interaction due to the small friction and the high flow rate. “When the molecules are not retained because of their size, interaction with the material will often determine what happens. The molecules will bounce through the membrane similar to a climber climbing a wall. This is much easier when there are many good climbing holds,” Schäfer explains. Studies like that performed by IAMT help to specifically design pore geometry and pore surface structure.

 

Ten Years to Turn the Idea into an Experiment
 
The membranes were developed by Dr. Francesco Fornasiero and his team at LLNL. The experiments with the micropollutants were carried out and evaluated using latest analytical instruments at IAMT. “It took about ten years to turn the idea into a successful experiment that has met with the wide interest of the membrane technology community,” Schäfer says. Production of such nearly perfect membranes is extremely difficult. On larger areas of some square centimeters, the probability of defects is very high. And defects would influence the results. In recent years, LLNL succeeded in producing membranes on larger areas. In parallel, IAMT researchers built very small filtration systems for experiments to retain trace pollutants on two square centimeters. “Downscaling is extremely difficult. Having managed this together is a big success,” Schäfer says. “Now, we are waiting for the development of membranes with even smaller pores.”

The study was the first to focus on the interplay of hydrodynamic forces, friction, and forces of attraction and repulsion. It provides basic findings with respect to water processing. These may benefit ultra- and nanofiltration processes controlled by nanopores. 

 

Original Publication (Open Access)
Minh N. Nguyen, Melinda L. Jue, Steven F. Buchsbaum, Sei Jin Park, Florian Vollnhals, Silke Christiansen, Francesco Fornasiero, Andrea I. Schäfer: Interplay of the forces governing steroid hormone micropollutant adsorption in vertically-aligned carbon nanotube membrane nanopores. Nature Communications, 2024. DOI: 10.1038/s41467-024-44883-2

https://www.nature.com/articles/s41467-024-44883-2

 

Being “The Research University in the Helmholtz Association”, KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility, and information. For this, about 9,800 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 22,300 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life. KIT is one of the German universities of excellence.



Journal

Nature Communications

DOI

10.1038/s41467-024-44883-2

Article Title

Interplay of the forces governing steroid hormone micropollutant adsorption in vertically-aligned carbon nanotube membrane nanopores

Article Publication Date

6-Feb-2024

COI Statement

The authors declare no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Genetic Diversity and Virulence in Cupriavidus

Exploring Genetic Diversity and Virulence in Cupriavidus

October 2, 2025

Tiny Cellular Messengers in Obesity Speed Up Alzheimer’s-Related Brain Plaque Formation

October 2, 2025

Improving Ethiopian Livestock: Quality Challenges and Solutions

October 2, 2025

Can Elephants Sense When We’re Watching Them?

October 2, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    75 shares
    Share 30 Tweet 19
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Diaphragm Release Improves Chronic Neck Pain Outcomes

Exploring Genetic Diversity and Virulence in Cupriavidus

Stress Hyperglycemia’s Role in Delirium from Pneumonia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.