• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Epigenetic drift underlies epigenetic clock signals, but…

Bioengineer by Bioengineer
February 6, 2024
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

“In this study, we report an approach for spatially resolving genomic patterns of DNA methylation disorder […]”

Figure 3

Credit: 2024 Bertucci-Richter et al.

“In this study, we report an approach for spatially resolving genomic patterns of DNA methylation disorder […]”

BUFFALO, NY- February 6, 2024 – A new research paper was published in Aging (listed by MEDLINE/PubMed as “Aging (Albany NY)” and “Aging-US” by Web of Science) Volume 16, Issue 2, entitled, “Epigenetic drift underlies epigenetic clock signals, but displays distinct responses to lifespan interventions, development, and cellular dedifferentiation.”

Changes in DNA methylation with age are observed across the tree of life. The stereotypical nature of these changes can be modeled to produce epigenetic clocks capable of predicting chronological age with unprecedented accuracy. Despite the predictive ability of epigenetic clocks and their utility as biomarkers in clinical applications, the underlying processes that produce clock signals are not fully resolved, which limits their interpretability. 

In this new study, researchers Emily M. Bertucci-Richter, Ethan P. Shealy, and Benjamin B. Parrott from the University of Georgia developed a computational approach to spatially resolve the within read variability or “disorder” in DNA methylation patterns and test if age-associated changes in DNA methylation disorder underlie signals comprising epigenetic clocks. 

“Herein, we apply novel read-based strategies to resolve age-associated epigenetic disorder across the mouse genome.”

The team found that epigenetic clock loci are enriched in regions that both accumulate and lose disorder with age, suggesting a link between DNA methylation disorder and epigenetic clocks. They then developed epigenetic clocks that are based on regional disorder of DNA methylation patterns and compared their performance to other epigenetic clocks by investigating the influences of development, lifespan interventions, and cellular dedifferentiation. The researchers identified common responses as well as critical differences between canonical epigenetic clocks and those based on regional disorder, demonstrating a fundamental decoupling of epigenetic aging processes. 

“Collectively, we identify key linkages between epigenetic disorder and epigenetic clocks and demonstrate the multifaceted nature of epigenetic aging in which stochastic processes occurring at non-random loci produce predictable outcomes.”

 

Read the full paper: DOI: https://doi.org/10.18632/aging.205503 

Corresponding Author: Emily M. Bertucci-Richter

Corresponding Email: [email protected] 

Keywords: epigenetic aging, epigenetic drift, epigenetic rejuvenation, lifespan, DNA methylation

Click here to sign up for free Altmetric alerts about this article.

 

About Aging:

Launched in 2009, Aging publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.

Please visit our website at www.Aging-US.com​​ and connect with us:

  • Facebook
  • X, formerly Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • Reddit
  • Pinterest
  • Spotify, and available wherever you listen to podcasts

 

Click here to subscribe to Aging publication updates.

For media inquiries, please contact [email protected].

 

Aging (Aging-US) Journal Office

6666 E. Quaker Str., Suite 1B

Orchard Park, NY 14127

Phone: 1-800-922-0957, option 1

###



Journal

Aging-US

DOI

10.18632/aging.205503

Method of Research

Observational study

Subject of Research

Animals

Article Title

Epigenetic drift underlies epigenetic clock signals, but displays distinct responses to lifespan interventions, development, and cellular dedifferentiation

Article Publication Date

26-Jan-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Artificial Intelligence Drives Advances in Solid-State Battery Material Screening and Performance Assessment

Artificial Intelligence Drives Advances in Solid-State Battery Material Screening and Performance Assessment

August 14, 2025
AI-Powered Transparent Sleep Apnea Assessment Unveiled

AI-Powered Transparent Sleep Apnea Assessment Unveiled

August 14, 2025

Blocking HIF-1 Shields Retinal Cells from Hypoxia

August 14, 2025

Scientists Harness Smartwatches to Gain Deeper Insights into Human Activity

August 14, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hanyang University Researchers Unveil Digital Twin Framework to Boost Sustainability and Efficiency in Modular Building Design

Innovative Patterning Technique Paves the Way for Next-Gen OLED Displays

Artificial Intelligence Drives Advances in Solid-State Battery Material Screening and Performance Assessment

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.