• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists mix and match properties to make new superconductor with chiral structure

Bioengineer by Bioengineer
February 3, 2024
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tokyo, Japan – Researchers from Tokyo Metropolitan University have created a new superconductor with a chiral crystalline structure by mixing two materials, one with superconductivity but no chirality, another with chirality but no superconductivity. The new platinum-iridium-zirconium compound transitions to a bulk superconductor below 2.2 K and was observed to have chiral crystalline structure using X-ray diffraction. Their new solid solution approach promises to accelerate the discovery and understanding of new exotic superconducting materials.

A new approach to finding new superconductors.

Credit: Tokyo Metropolitan University

Tokyo, Japan – Researchers from Tokyo Metropolitan University have created a new superconductor with a chiral crystalline structure by mixing two materials, one with superconductivity but no chirality, another with chirality but no superconductivity. The new platinum-iridium-zirconium compound transitions to a bulk superconductor below 2.2 K and was observed to have chiral crystalline structure using X-ray diffraction. Their new solid solution approach promises to accelerate the discovery and understanding of new exotic superconducting materials.

 

Scientists studying superconductivity are on a mission to understand how the exotic nature of superconducting materials arises from their structure, and how we might control the structure to get desirable properties. Of the many aspects of structure, an interesting recent development is the issue of chirality. Many structures have a “handedness,” that is, they do not look the same in a mirror. An effect of chirality in superconductors is to trigger something called asymmetric spin-orbit coupling (ASOC), an effect which can make superconductors more robust to high magnetic field exposure.

To understand chirality in more depth, however, scientists need more superconductors with a chiral structure to study. The usual route is to search out chiral compounds, check if they are superconducting or not, rinse and repeat: this is very inefficient. That is why a team from Tokyo Metropolitan University led by Associate Professor Yoshikazu Mizuguchi have introduced an entirely new approach. Instead of combing through lists of compounds, they mixed two compounds with known physical properties, a platinum-zirconium compound with superconductivity but no chirality, and an iridium-zirconium compound with a chiral structure, but no reports of superconductivity. By combining elements in a ratio that matches a certain proportion of each compound, they were able to effectively “mix and match” physical properties, coming up with a new material that had both a chiral crystal structure and superconductivity.

The team firstly studied different mixture ratios, finding that at around 80% iridium inclusion, the proportion of chiral crystalline structure (here, the P6122 structure of the chiral iridium-zirconium compound) increases rapidly at room temperature. Cooling samples to low temperatures, they were able to confirm superconductivity up to around 85%. This left a small window where both properties can manifest. Looking at their 80% mixture, they cooled the sample down to around where superconductivity was seen, finding that the proportion of chiral structure increases dramatically. Clearly, their new compound is a superconductor with a chiral structure.

The team also confirmed that the superconductivity arises in the bulk, not from the surface. Their work demonstrates the power of a “mix and match” approach in making new exotic superconductors, a welcome, dramatic boost in the hunt for more materials, and more understanding.

This work was supported by a Tokyo Government Advanced Research Grant (H31-1) and JST-ERATO Grant Number JPMJER2201.



Journal

Journal of the American Chemical Society

DOI

10.1021/jacs.3c10797

Article Title

Low-Temperature Chiral Crystal Structure and Superconductivity in (Pt0.2Ir0.8)3Zr5

Article Publication Date

26-Dec-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Black Metal Could Significantly Enhance Solar Power Generation

Black Metal Could Significantly Enhance Solar Power Generation

August 12, 2025
Ultrafast Untethered Levitation Device Harnesses Squeeze Film for Omni-Directional Transport

Ultrafast Untethered Levitation Device Harnesses Squeeze Film for Omni-Directional Transport

August 12, 2025

Tan Leads Investigation into Ferroelectric Oxides as Heterogeneous Photocatalysts for Ethane Dehydrogenation

August 12, 2025

Revolutionary Research Unveils “Pore Science and Engineering” Paving the Way for Next-Generation Porous Materials

August 12, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Lung Recruitability in Neonatal Ventilation

Triglyceride-Glucose Index Signals Parkinson’s Cognitive Decline

Revolutionary Technique Transports mRNA into Exosomes in Just 10 Minutes—Simply Mix and Go!

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.