• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A sleeker facial recognition technology tested on Michelangelo’s David

Bioengineer by Bioengineer
February 2, 2024
in Chemistry
Reading Time: 3 mins read
0
A sleeker facial recognition technology tested on Michelangelo’s David
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Many people are familiar with facial recognition systems that unlock smartphones and game systems or allow access to our bank accounts online. But the current technology can require boxy projectors and lenses. Now, researchers report in ACS’ Nano Letters a sleeker 3D surface imaging system with flatter, simplified optics. In proof-of-concept demonstrations, the new system recognized the face of Michelangelo’s David just as well as an existing smartphone system.

A sleeker facial recognition technology tested on Michelangelo’s David

Credit: Adapted from Nano Letters, 2024, DOI: 10.1021/acs.nanolett.3c05002

Many people are familiar with facial recognition systems that unlock smartphones and game systems or allow access to our bank accounts online. But the current technology can require boxy projectors and lenses. Now, researchers report in ACS’ Nano Letters a sleeker 3D surface imaging system with flatter, simplified optics. In proof-of-concept demonstrations, the new system recognized the face of Michelangelo’s David just as well as an existing smartphone system.

3D surface imaging is a common tool used in smartphone facial recognition, as well as in computer vision and autonomous driving. These systems typically consist of a dot projector that contains multiple components: a laser, lenses, a light guide and a diffractive optical element (DOE). The DOE is a special kind of lens that breaks the laser beam into an array of about 32,000 infrared dots. So, when a person looks at a locked screen, the facial recognition system projects an array of dots onto most of their face, and the device’s camera reads the pattern created to confirm the identity. However, dot projector systems are relatively large for small devices such as smartphones. So, Yu-Heng Hong, Hao-Chung Kuo, Yao-Wei Huang and colleagues set out to develop a more compact facial recognition system that would be nearly flat and require less energy to operate.

To do this, the researchers replaced a traditional dot projector with a low-power laser and a flat gallium arsenide surface, significantly reducing the imaging device’s size and power consumption. They etched the top of this thin metallic surface with a nanopillar pattern, which creates a metasurface that scatters light as it passes through the material. In this prototype, the low-powered laser light scatters into 45,700 infrared dots that are projected onto an object or face positioned in front of the light source. Like the dot projector system, the new system incorporates a camera to read the patterns that the infrared dots created.

In tests of the prototype, the system accurately identified a 3D replica of Michelangelo’s David by comparing the infrared dot patterns to online photos of the famous statue. Notably, it accomplished this using five to 10 times less power and on a platform with a surface area about 230 times smaller than a common dot-projector system. The researchers say their prototype demonstrates the usefulness of metasurfaces for effective small-scale low-power imaging solutions for facial recognition, robotics and extended reality.    

The authors acknowledge funding from Hon Hai Precision Industry, the National Science and Technology Council in Taiwan, and the Ministry of Education in Taiwan.

###

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and all its people. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Note: ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies.

Follow us: Twitter | Facebook | LinkedIn | Instagram



Journal

Nano Letters

DOI

10.1021/acs.nanolett.3c05002

Article Title

“Metasurface- and PCSEL-Based Structured Light for Monocular Depth Perception and Facial Recognition”

Article Publication Date

10-Jan-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Rice membrane extracts lithium from brine faster and with reduced waste

Rice membrane extracts lithium from brine faster and with reduced waste

October 2, 2025
blank

Pseudokinases Drive Peptide Cyclization via Thioether Crosslinking

October 2, 2025

MIT Researchers Develop Simple Formula to Enhance Fast-Charging, Durable Batteries

October 2, 2025

Registration and Scientific Program Now Open for Upcoming Plasma Physics Conference

October 2, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    86 shares
    Share 34 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Mitochondrial Dynamics in Cancer Drug Resistance

Rice Bran Extract: A Shield Against Neuroinflammation

Nationwide Survey Reveals Insights on Internal Medicine Mentorship

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.