• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Intensifying the production of high-value compounds from industrial waste

Bioengineer by Bioengineer
February 1, 2024
in Chemistry
Reading Time: 3 mins read
0
Intensifying the production of high-value compounds from industrial waste
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study by the Center for Integrated Technology and Organic Synthesis (CiTOS, Univerisity of Liège) demonstrates how glycerol carbonate, a biosourced industrial additive, can be produced in record time using CO2 and a by-product of the cooking oil recycling industry. In collaboration with colleagues from the Center for Studies and Research on Macromolecules (CERM) , this study lays the foundations for continuous industrial production.

Intensifying the production of high-value compounds from industrial waste

Credit: CiTOS/ULiège

A study by the Center for Integrated Technology and Organic Synthesis (CiTOS, Univerisity of Liège) demonstrates how glycerol carbonate, a biosourced industrial additive, can be produced in record time using CO2 and a by-product of the cooking oil recycling industry. In collaboration with colleagues from the Center for Studies and Research on Macromolecules (CERM) , this study lays the foundations for continuous industrial production.

Ambitious R&D and production directives in Europe are stimulating the integration of innovative technologies to reduce environmental impact and to move away from an exclusive reliance on petrochemical resources. In this context, researchers at CiTOS – directed by Jean-Chrsitophe Monbaliu – are developing new processes that privilege molecules derived from biomass. Among these biobased molecules, glycerol stands out as a prime target due to its abundance. Glycerol is mainly derived from the biodiesel industry and cooking oil recycling; its low economic value has relegated it to the status of waste until now. Another waste turned public enemy number one, CO2, is an industrial gaseous effluent with low economic value. By combining their respective areas of expertise, the teams at CiTOS (continuous flow organic chemistry in micro/mesofluidic reactors and upgrading of biobased compounds) and CERM (synthesis of organic materials from CO2) are developing new methods to valorize glycerol and CO2 toward high value-added molecules.

Glycerol carbonate, which formally results from the condensation glycerol and CO2, has recently become a rising star. It offers several advantages over other petroleum-based carbonates such as ethylene and propylene carbonates, which are key electrolyte carriers in lithium batteries. Its significantly lower flammability could greatly reduce the fire risks inherent in these batteries. The carbonate can also be used as a biolubricant, formulation agent, or alternative green solvent. “Despite such potential, the current market for glycerol carbonate remains very limited,” comments Jean-Christophe Monbaliu. “The main reason is that current production processes are slow and expensive. Our work is in the process of changing that,” he continues.

The work is based on a hybrid approach combining fundamental and applied organic chemistry: a detailed study of the mechanism through quantum chemistry and its deployment under mesofluidic conditions converge toward a unique intensified process. The process, validated at the pilot scale, transforms a direct derivative of glycerol, namely glycidol, in the presence of CO2 and an organic catalyst into glycerol carbonate. The efficiency of the process, which reaches completion in less than 30 seconds, far surpasses all current processes for glycerol carbonate production. “Such favorable metrics open unprecedented perspectives for potential future industrialization,” concludes Jean-Christophe Monbaliu.”

 



Journal

Angewandte Chemie International Edition

DOI

10.1002/anie.202319060

Article Title

Intensified Continuous Flow Process for the Scalable Production of Bio-Based Glycerol Carbonate

Article Publication Date

10-Jan-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.