• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The hottest catalog of the year: the most comprehensive list of slow-building solar flares yet

Bioengineer by Bioengineer
January 31, 2024
in Chemistry
Reading Time: 2 mins read
0
sun with solar flares
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Solar flares occur when magnetic energy builds up in the Sun’s atmosphere and is released as electromagnetic radiation. Lasting anywhere from a few minutes to a few hours, flares usually reach temperatures around 10 million degrees Kelvin. Because of their intense electromagnetic energy, solar flares can cause disruptions in radio communications, Earth-orbiting satellites and even result in blackouts.

sun with solar flares

Credit: (cr: NASA/GSFC/SDO)

Solar flares occur when magnetic energy builds up in the Sun’s atmosphere and is released as electromagnetic radiation. Lasting anywhere from a few minutes to a few hours, flares usually reach temperatures around 10 million degrees Kelvin. Because of their intense electromagnetic energy, solar flares can cause disruptions in radio communications, Earth-orbiting satellites and even result in blackouts.

Although flares have been classified based on the amount of energy they emit at their peak, there has not been significant study into differentiating flares based on the speed of energy build-up since slow-building flares were first discovered in the 1980s. In a new paper in Solar Physics, a team, led by UC San Diego astrophysics graduate student Aravind Bharathi Valluvan, has shown that there is a significant amount of slower-type flares worthy of further investigation.

The width-to-decay ratio of a flare is the time it takes to reach maximum intensity to the time it takes to dissipate its energy. Most commonly, flares spend more time dissipating than rising. In a 5-minute flare, it may take 1 minute to rise and 4 minutes to dissipate for a ratio of 1:4. In slow-building flares, that ratio may be 1:1, with 2.5 minutes to rise and 2.5 minutes to dissipate.

Valluvan was a student at the Indian Institute of Technology Bombay (IITB) when this work was conducted. Exploiting the increased capabilities of the Chandrayaan-2 solar orbiter, IITB researchers used the first three years of observed data to catalog nearly 1400 slow-rising flares — a dramatic increase over the roughly 100 that had been previously observed over the past four decades. 

It was thought that solar flares were like the snap of a whip — quickly injecting energy before slowly dissipating. Now seeing slow-building flares in such high quantities may change that thinking.

“There is thrilling work to be done here,” stated Valluvan who now works in UC San Diego Professor of Astronomy and Astrophysics Steven Boggs’ group. “We’ve identified two different types of flares, but there may be more. And where do the processes differ? What makes them rise and fall at different rates? This is something we need to understand.”



Journal

Solar Physics

DOI

10.1007/s11207-023-02244-0

Method of Research

Data/statistical analysis

Article Title

Solar Flare Catalogue from 3 Years of Chandrayaan-2 XSM Observations

Article Publication Date

22-Jan-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Rice membrane extracts lithium from brine faster and with reduced waste

Rice membrane extracts lithium from brine faster and with reduced waste

October 2, 2025
blank

Pseudokinases Drive Peptide Cyclization via Thioether Crosslinking

October 2, 2025

MIT Researchers Develop Simple Formula to Enhance Fast-Charging, Durable Batteries

October 2, 2025

Registration and Scientific Program Now Open for Upcoming Plasma Physics Conference

October 2, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    84 shares
    Share 34 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Survey Reveals Interest in Alternative Cancer Prevention Methods

Cathepsin K Links Glucose Issues and Atherosclerosis

Conserved Small Sequences Revealed by Yeast Ribo-seq

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.