• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Treatment of aggressive breast cancer: discovery of a new protein involved in the development of metastases

Bioengineer by Bioengineer
January 31, 2024
in Biology
Reading Time: 2 mins read
0
Treatment of aggressive breast cancer: discovery of a new protein involved in the development of metastases
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A protein found abundantly in breast cancers that are refractory to conventional treatments is thought to cause the development of metastasis. Targeting it would prevent metastatic spread and therefore increase patients survival. These are the findings of a study conducted by a French-American team and led by a biologist at CNRS1. The study, the results of which appear on 31st January in Cell Discovery, aims to better understand the mechanisms at play in the development of primary tumours in aggressive breast cancers into metastases2.

""

Credit: ©Casanova & al.

A protein found abundantly in breast cancers that are refractory to conventional treatments is thought to cause the development of metastasis. Targeting it would prevent metastatic spread and therefore increase patients survival. These are the findings of a study conducted by a French-American team and led by a biologist at CNRS1. The study, the results of which appear on 31st January in Cell Discovery, aims to better understand the mechanisms at play in the development of primary tumours in aggressive breast cancers into metastases2.

Malignant cells are thought to spread thanks to the SMYD2 protein, which diverts the activity of another protein — BCAR3 — to the cells’ advantage. Known to be partly responsible for the adhesion and migration capacity of metastatic cancer cells, BCAR3 activity is heavily stimulated by SMYD2. In vitro experiments show that the development of these cells and their ability to migrate and invade surrounding tissues requires the presence and activity of SMYD2.

The team of scientists subsequently attempted to inhibit SMYD2 in mice with primary-stage breast cancer. A comparative analysis of the development of a cancer in treated and untreated mice revealed a correlation between SMYD2 inhibition, the blocking of its action on BCAR3 and the absence of metastasis.

These results are a compelling first step towards the development of an early treatment to prevent the development of metastases in breast cancer. Such a preventive treatment would give the medical team more time to identify and implement effective therapy to treat the primary tumour, or to find an alternative for refractory tumours.

1 Institute for Advanced Biosciences, Grenoble (CNRS/Université Grenoble Alpes/INSERM)

2 Tumours formed by the spread of the primary tumour and invasion of the patient’s other organs.



Journal

Cell Discovery

Method of Research

Experimental study

Article Title

Cytoskeleton remodeling induced by SMYD2 methyltransferase drives breast cancer metastasis.

Article Publication Date

31-Jan-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Initiative Aims to Halt Decline of Iconic Butterfly Species

Initiative Aims to Halt Decline of Iconic Butterfly Species

October 1, 2025
Revolutionary Algorithm Enhances Disease Classification Using Omics

Revolutionary Algorithm Enhances Disease Classification Using Omics

October 1, 2025

Carnegie Mellon Wins ARPA-H Grant to Develop At-Home Technology for Early Cancer Detection

October 1, 2025

Uncovering How Pathogens Assemble Protein Machinery to Thrive in the Gut

October 1, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    64 shares
    Share 26 Tweet 16
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    63 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Initiative Aims to Halt Decline of Iconic Butterfly Species

Validating Self-Supervised AI for ICF Coding

Linking Nurses’ Emotional Skills to Care Competence

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.