• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A new technique for creation of entangled photon states developed

Bioengineer by Bioengineer
February 14, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Egor Kovlakov

Members of the Faculty of Physics, the Lomonosov Moscow State University have elaborated a new technique for creation of entangled photon states, exhibiting photon pairs, which get correlated (interrelated) with each other. Scientists have described their research in an article, published in the journal Physical Review Letters.

Physicists from the Lomonosov Moscow State University have studied an entangled photon state, in which the state is determined only for the whole system and not for each separate particle.

Stanislav Straupe, Doctor of Sciences in Physics and Mathematics, a member of the Quantum Electronics Department and Quantum Optical Technologies Laboratory at the Faculty of Physics, the Lomonosov Moscow State University, and one of the article co-authors says the following. He explains: "Entangled states are typical and general. The only problem is in the point that for the majority of particles interaction with the environment destroys the entanglement. And photons hardly ever interact with other particles, thus they are a very convenient object for experiments in this sphere. The largest part of light sources we face in our life is a classical one — for instance, the Sun, stars, incandescent lamps and so on. Coherent laser radiation also belongs to the classical part. To create nonclassical light isn't an easy thing. You could, for instance, isolate a single atom or an artificial structure like a quantum dot and detect its radiation – this is the way for single photons obtaining."

An effect of spontaneous parametric down-conversion in nonlinear crystal is most commonly used for obtaining of entangled photon states. In this process a laser pumping photon splits into two. As this takes place photon states get correlated, entangled due to the conservation laws. Egor Kovlakov, a doctoral student from the Quantum Electronics Department at the Radio Physics Division of the Faculty of Physics, the Lomonosov Moscow State University and an article co-author shares: "In our project we've offered and tested a new technique of the spatial entanglement creation. Photon pairs, generated in our experiment, propagate by beams, which get correlated in "spatial profile". Efficiency is the key peculiarity of our technique in comparison with the previously known ones."

Studies of entangled photon states started in 1970-s years and nowadays they are most actively used in quantum cryptography, an area relating to quantum information transfer and quantum communication.

Stanislav Straupe notices: "Quantum cryptography is not the only one of the possible applications, but at the moment it is the most developed one. Unlike classical communication, where it's not important which alphabet is used for message coding and it's enough to use a binary one (0 or 1), everything is more complicated in quantum communication. It turns out that enhancement of alphabet dimension not only increases amount of information coded in one photon, but also strengthens communication security. That's why it'd be interesting to develop quantum communication systems, based also on information coding in spatial profile of photons." The scientists suppose that in the future their solution will be applied for creation of an optical channel with a satellite, where you can't install optical fiber (an optical fiber guide) — a basis for fiber-optic communication.

###

Media Contact

Vladimir Koryagin
[email protected]

http://www.msu.ru

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Decision-Making in Dementia Caregivers’ Mobility

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.