• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

How to shift gears in a molecular motor

Bioengineer by Bioengineer
January 25, 2024
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

“Artificial molecular motors are molecules that absorb light from an external source, such as sunlight, and convert the energy in light into kinetic energy,” says Bo Durbeej, professor at Linköping University (LiU), who led the study published in Chemistry – a European Journal.

Bo Durbeej, Linköping University

Credit: Thor Balkhed/Linköping University

“Artificial molecular motors are molecules that absorb light from an external source, such as sunlight, and convert the energy in light into kinetic energy,” says Bo Durbeej, professor at Linköping University (LiU), who led the study published in Chemistry – a European Journal.

“Molecular motors” may sound like science fiction, but in the body there are many biological molecular motors that drive muscles and transport substances inside cells. Chemistry and nanotechnology researchers have long been aiming to develop artificial molecular motors, which may be useful in several areas in the future. Possible applications include using them to deliver medical drugs to the right place in the body or for storing solar energy.

But a motor on its own is not enough. A car having only a motor or an engine but no wheels would not get far. The power from the motor must be transferred – to the wheels, in the case of the car – and this is done via a gearbox. Similarly, the next step in this research field is to construct molecular gears that can transfer the kinetic energy from one part of a molecule to another. Future applications depend on being able to use the motion somewhere else than where it was created.

“Many scientists have long tried to construct molecular gears. We have developed a design principle for how to transfer the rotary motion to another part of a molecular system and have complete control over the direction of rotation. Previous designs have not been able to control the rotary motion,” says Bo Durbeej.

A major challenge with developing a molecular photogear is that the part that you want to rotate, the “propeller”, is attached to the rest of the molecule by a single bond. Single bonds rotate very easily, making it difficult to control directionality. But the LiU researchers have now succeeded in solving this problem by finding a good combination of several factors, including the distance between the propeller and the part of the molecule that constitutes the “motor” itself. 

The researchers have confirmed that their design works, by doing calculations and advanced computer simulations on supercomputers at the National Supercomputer Centre in Linköping provided by the Swedish National Infrastructure for Computing, SNIC, and the National Academic Infrastructure for Supercomputing in Sweden, NAISS. 

“We’ve now shown that our design principle works. The next step is to develop molecular photogears that are as easy as possible to synthesise,” says Bo Durbeej. 

The study was carried out with support from the Swedish Research Council, the Olle Engkvist Foundation and the Carl Trygger Foundation for Scientific Research.

Article: A Proof-of-Principle Design for Through-Space Transmission of Unidirectional Rotary Motion by Molecular Photogears, Enrique Arpa, Sven Stafström and Bo Durbeej, (2023), Chemistry – A European Journal, published online 31 October 2023, doi: 10.1002/chem.202303191

See also journal cover: https://doi.org/10.1002/chem.202304046



Journal

Chemistry – A European Journal

DOI

10.1002/chem.202303191

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

Article Title

A Proof-of-Principle Design for Through-Space Transmission of Unidirectional Rotary Motion by Molecular Photogears

Article Publication Date

31-Oct-2023

COI Statement

The authors declare no conflict of interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

August 28, 2025
Unlocking the Potential of In-Between Quantum States to Revolutionize Future Technologies

Unlocking the Potential of In-Between Quantum States to Revolutionize Future Technologies

August 28, 2025

When Ocean Waves Reach the Shoreline

August 28, 2025

Innovative Algorithm Paves the Way for Enhanced Noise Reduction in Quantum Devices

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

New CEA-Based Surveillance Boosts Gastric Cancer

Zharp1-163: Dual Inhibitor Tackles Inflammation, Kidney Injury

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.