• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Plumber’s nightmare structure in block polymers

Bioengineer by Bioengineer
January 22, 2024
in Chemistry
Reading Time: 3 mins read
0
Figure 1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Plumber’s nightmare structure presents itself as an assemblage where all exits seem to converge inward—a plumber’s nightmare but an anticipated uniqueness for researchers, suggesting distinctive traits divergent from traditional materials. Nonetheless, this intricate configuration was deemed unattainable, bordering on the realm of the impossible. Recently, a research team at Pohang University of Science and Technology (POSTECH) unearthed clues from neglected minuscule ends, transforming this dream into reality. The prestigious international journal Science not only published this research but also spotlighted it as an article, sparking considerable interest within academic circles.

Figure 1

Credit: POSTECH

Plumber’s nightmare structure presents itself as an assemblage where all exits seem to converge inward—a plumber’s nightmare but an anticipated uniqueness for researchers, suggesting distinctive traits divergent from traditional materials. Nonetheless, this intricate configuration was deemed unattainable, bordering on the realm of the impossible. Recently, a research team at Pohang University of Science and Technology (POSTECH) unearthed clues from neglected minuscule ends, transforming this dream into reality. The prestigious international journal Science not only published this research but also spotlighted it as an article, sparking considerable interest within academic circles.

 

Professor Moon Jeong Park and PhD candidate Hojun Lee from POSTECH’s Department of Chemistry brought to life nanostructures of block copolymers (hereafter BCPs), which were previously only envisioned. This study was featured in Science and published on the fifth of January 2024.

 

BCPs represent polymers constructed by linking blocks of one monomer with blocks of another. Capable of self-assembly, BCP’s craft diverse nanoscale structures, finding widespread applications across fields covering semiconductor and medicine. Recent studies have been vigorously exploring comparisons in optical and mechanical properties based on BCP structure. However, as structures grow more intricate, their thermodynamic stability diminishes, posing considerable challenges in their production.

 

Among these structures, the plumber’s nightmare, exhibiting medial packing of polymer chain ends, stands as an immensely complex and distinctive formation. While real-life instances of its manifestation were absent, it was hypothesized to possess unique optical and mechanical traits due to its distinctive channel structure, setting it apart from other nanostructures.

 

In this groundbreaking research, the team defied expectations by turning the impossible into possible. While most research has focused on the main polymer chains constituting BCPs, the researchers shift their focus to the inconspicuous, less than one percent, chain ends. They crafted di-end-functionalized BCPs by linking different molecules to each end of the polymer chain. Consequently, the polymer chain ends exhibited robust mutual attraction, causing all the polymer tails to coalesce inward, marking the team’s successful realization of the plumber’s nightmare structure, a world’s first achievement.

 

Furthermore, the team successfully produced a range of BCP structures that had hitherto remained enigmatic, including gyroid and diamond structures. This accomplishment in materializing BCP structures previously confined to the realms of imagination and theory stands as a significant feat.

 

Of particular note, this study’s significance lies in the conclusion that complex structures can be stably realized when potent forces exist at the ends, despite diverse adjustments made in BCP polymer composition and the main chain’s chemical properties. This suggests the universal applicability and adaptability of this research for future studies focused on developing diverse composite-structure polymer nanostructures.

 

Professor Alisyn J. Nedoma from the University of Sheffield, an expert in the BCP field, remarked in the Science commentary, “It lays the groundwork for designing novel BCP nanostructures,” assessing the potential cost-effectiveness in creating nanostructures with desired characteristics (see the Perspective by Nedoma).

 

The study’s lead, Professor Moon Jeong Park explained, “This research has enabled us to establish a method for developing tailored network structures in polymer BCP. It will serve as a platform for crafting polymer BCPs with diverse properties in nano-technology applications.”

 

This work was conducted with support from the following programs under the National Research Foundation of Korea: Mid-Career Researcher Program, Creative Materials Discovery Program, and Science Research Center Program.



Journal

Science

DOI

10.1126/science.adh0483

Article Title

Thermodynamically stable plumber’s nightmare structures in block copolymers

Article Publication Date

5-Jan-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.