• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Unlocking the secrets of quasicrystal magnetism: revealing a novel magnetic phase diagram

Bioengineer by Bioengineer
January 18, 2024
in Chemistry
Reading Time: 4 mins read
0
Magnetic phase diagram of the systems uncovered in this study
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Quasicrystals are intermetallic materials that have garnered significant attention from researchers aiming to advance condensed matter physics understanding. Unlike normal crystals, in which atoms are arranged in an ordered repeating pattern, quasicrystals have non-repeating ordered patterns of atoms. Their unique structure leads to many exotic and interesting properties, which are particularly useful for practical applications in spintronics and magnetic refrigeration.

Magnetic phase diagram of the systems uncovered in this study

Credit: Farid Labib from Tokyo University of Science
Image source: Adapted from https://www.sciencedirect.com/science/article/pii/S2542529323003577

Quasicrystals are intermetallic materials that have garnered significant attention from researchers aiming to advance condensed matter physics understanding. Unlike normal crystals, in which atoms are arranged in an ordered repeating pattern, quasicrystals have non-repeating ordered patterns of atoms. Their unique structure leads to many exotic and interesting properties, which are particularly useful for practical applications in spintronics and magnetic refrigeration.

A unique quasicrystal variant, known as the Tsai-type icosahedral quasicrystal (iQC) and their cubic approximant crystals (ACs), display intriguing characteristics. These include long-range ferromagnetic (FM) and anti-ferromagnetic (AFM) orders, as well as unconventional quantum critical phenomenon, to name a few. Through precise compositional adjustments, these materials can also exhibit intriguing features like aging, memory, and rejuvenation, making them suitable for the development of next-generation magnetic storage devices. Despite their potential, however, the magnetic phase diagram of these materials remains largely unexplored. 

To uncover more, a team of researchers, led by Professor Ryuji Tamura from the Department of Materials Science and Technology at Tokyo University of Science (TUS) in collaboration with researchers from Tohoku University recently conducted magnetization and powder neutron diffraction (PND) experiments on the non-Heisenberg Tsai-type 1/1 gold-gallium-terbium AC.

“For the first time, the phase diagrams of the non-Heisenberg Tsai-type AC have been unravelled. This will boost applied physics research on magnetic refrigeration and spintronics,” remarks Professor Tamura.

Their findings were published in the journal Materials Today Physics on December 19, 2023.

Through several experiments, the researchers developed the first comprehensive magnetic phase diagram of the non-Heisenberg Tsai-type AC, covering a broad range of electron-per-atom (e/a) ratios (a parameter crucial for understanding the fundamental nature of QCs). Additionally, measurements using the powder neutron diffraction (PND) revealed the presence of a noncoplanar whirling AFM order at an e/a ratio of 1.72 and a noncoplanar whirling FM order at the e/a ratio of 1.80.  The team further elucidated the ferromagnetic and anti-ferromagnetic phase selection rule of magnetic interactions by analyzing the relative orientation of magnetic moments between nearest-neighbour and next-nearest neighbour sites.

Professor Tamura adds that their findings open up new doors for the future of condensed matter physics. “These results offer important insights into the intricate interplay between magnetic interactions in non-Heisenberg Tsai-type ACs. They lay the foundation for understanding the intriguing properties of not only non-Heisenberg ACs but also non-Heisenberg iQCs that are yet to be discovered.”

In summary, the present breakthrough propels condensed matter physics and quasicrystal research into uncharted territories, paving the way for advanced electronic devices and next-generation refrigeration technologies!

 

***

 

Reference                     

DOI: https://doi.org/10.1016/j.mtphys.2023.101321

 

Authors: Farid Labib1, Kazuhiro Nawa2, Shintaro Suzuki3, Hung-Cheng Wu2, Asuka Ishikawa1, Kazuki Inagaki4, Takenori Fujii5, Katsuki Kinjo2, Taku J. Sato2, and Ryuji Tamura1

 

Affiliations:     

1Research Institute of Science and Technology, Tokyo University of Science

2Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University

3Department of Physical Science, Aoyama Gakuin University

4Department of Materials Science and Technology, Tokyo University of Science

5Cryogenic Research Center, The University of Tokyo

 

Funding information
This work was supported by Japan Society for the Promotion of Science through Grants-in-Aid for Scientific Research (Grants No. JP19H05817, JP19H05818, JP19H05819, JP21H01044, JP22H00101, JP22H04582) and Japan Science and Technology agency, CREST, Japan, through a grant No. JPMJCR22O3. The experiments at JRR-3 were supported by the General User Program for Neutron Scattering Experiments (No. 22511), Institute for Solid State Physics, University of Tokyo and Sumitomo Foundation.



Journal

Materials Today Physics

DOI

10.1016/j.mtphys.2023.101321

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Unveiling exotic magnetic phase diagram of a non-Heisenberg quasicrystal approximant

Article Publication Date

19-Dec-2023

COI Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Share12Tweet8Share2ShareShareShare2

Related Posts

Running Quantum Dynamics on Your Laptop? Breakthrough Technique Brings Us Closer

Running Quantum Dynamics on Your Laptop? Breakthrough Technique Brings Us Closer

October 8, 2025
Creating Advanced Polymers for Next-Generation Bioelectronics

Creating Advanced Polymers for Next-Generation Bioelectronics

October 8, 2025

ACS President Reacts to 2025 Nobel Prize in Chemistry Announcement

October 8, 2025

Innovative 3D Printing Technique ‘Grows’ Ultra-Strong Materials

October 8, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1100 shares
    Share 439 Tweet 275
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    79 shares
    Share 32 Tweet 20

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Quantum-Enhanced Spectroscopy on Optical Clock Transitions

User-Carried Safety Device Boosts Avalanche Survival Time by Fivefold

Enhancing Investment Returns: Decision Transformer Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.