• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Snowflakes swirling in turbulent air as they fall through a laser light sheet. Credit: Singh et al.

Bioengineer by Bioengineer
December 19, 2023
in Chemistry
Reading Time: 3 mins read
0
Snowflakes swirling in turbulent air
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON, Dec. 19, 2023 – A winter wonderland calls to mind piles of fluffy, glistening snow. But to reach the ground, snowflakes are swept into the turbulent atmosphere, swirling through the air instead of plummeting directly to the ground.

Snowflakes swirling in turbulent air

Credit: Singh et al.

WASHINGTON, Dec. 19, 2023 – A winter wonderland calls to mind piles of fluffy, glistening snow. But to reach the ground, snowflakes are swept into the turbulent atmosphere, swirling through the air instead of plummeting directly to the ground.

The path of precipitation is complex but important to more than just skiers assessing the potential powder on their alpine vacation or school children hoping for a snow day. Determining snowflake fall speed is crucial for predicting weather patterns and measuring climate change.

In Physics of Fluids, from AIP Publishing, researchers from the University of Utah report snowflake accelerations in atmospheric turbulence. They found that regardless of turbulence or snowflake type, acceleration follows a universal statistical pattern that can be described as an exponential distribution.

“Even in the tropics, precipitation often starts its lifetime as snow,” said author Timothy Garrett. “How fast precipitation falls greatly affects storm lifetimes and trajectories and the extent of cloud cover that may amplify or diminish climate change. Just small tweaks in model representations of snowflake fall speed can have important impacts on both storm forecasting and how fast climate can be expected to warm for a given level of elevated greenhouse gas concentrations.”

Set up in a ski area near Salt Lake City, the team battled an unprecedented 900 inches of snow. They simultaneously filmed snowfall and measured atmospheric turbulence. Using a device they invented that employs a laser light sheet, they gathered information about snowflake mass, size, and density.   

“Generally, as expected, we find that low-density ‘fluffy’ snowflakes are most responsive to surrounding turbulent eddies,” said Garrett.

Despite the system’s complexity, the team found that snowflake accelerations follow an exponential frequency distribution with an exponent of three halves. In analyzing their data, they also discovered that fluctuations in the terminal velocity frequency distribution followed the same pattern.

“Snowflakes are complicated, and turbulence is irregular. The simplicity of the problem is actually quite mysterious, particularly given there is this correspondence between the variability of terminal velocities – something ostensibly independent of turbulence – and accelerations of the snowflakes as they are locally buffeted by turbulence,” said Garrett.

Because size determines terminal velocity, a possible explanation is that the turbulence in clouds that influences snowflake size is related to the turbulence measured at the ground. Yet the factor of three halves remains a mystery.

The researchers will revisit their experiment this winter, using a mist of oil droplets to obtain a closer look at turbulence and its impact on snowflakes.

###

The article “A universal scaling law for Lagrangian snowflake accelerations in atmospheric turbulence” is authored by Dhiraj Kumar Singh, Eric R. Pardyjak, and Timothy Garrett. It will appear in Physics of Fluids on Dec. 19, 2023 (DOI: 10.1063/5.0173359). After that date, it can be accessed at https://doi.org/10.1063/5.0173359.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex fluids. See https://pubs.aip.org/aip/pof.

###



Journal

Physics of Fluids

DOI

10.1063/5.0173359

Article Title

A universal scaling law for Lagrangian snowflake accelerations in atmospheric turbulence

Article Publication Date

19-Dec-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Decision-Making in Dementia Caregivers’ Mobility

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.