• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Pesticides and adjuvants disrupt honey bee’s sense of smell

Bioengineer by Bioengineer
December 15, 2023
in Chemistry
Reading Time: 4 mins read
0
Researcher image
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

It has long been known that exposure to pesticide sprays is harmful to honey bees. In a new study, researchers have uncovered the effect of such sprays on the sense of smell in bees, which could disrupt their social signals.

Researcher image

Credit: Ling-Hsiu Liao

It has long been known that exposure to pesticide sprays is harmful to honey bees. In a new study, researchers have uncovered the effect of such sprays on the sense of smell in bees, which could disrupt their social signals.

Honey bees live in dynamic communities and constantly communicate with each other using chemicals that serve as social cues. For example, nurse bees—that are responsible for taking care of larvae that ultimately become queens and worker bees—constantly monitor the larvae using in the dark using pheromones. The larvae emit brood pheromones to indicate that they need food. There are also alarm pheromones that workers produce to warn the other bees of danger. If these cues are dampened or not perceived properly, the colony may fail to thrive.

Since 2007, scientists have known that honey bees have been in trouble. One of the stressors that have raised concerns are insecticides, which affect honey bee health. Because these are usually used in combination with other chemicals, the resulting mixture can become unexpectedly toxic to bees.

“For many years, it was assumed that fungicides do not have an adverse impact on insects because they are designed for fungal targets,” said May Berenbaum (GEGC/IGOH), a professor of entomology. “Surprisingly, in addition to insecticides, fungicides also have an adverse effect on bees and combining the two can disrupt colony function.”

For more than a decade, reports originating from almond orchards, where two-thirds of the U.S. honey bees are transported every year when the flowers are in bloom, implicated pesticide spray mixtures. In particular, the problem lies in the use of supposedly inactive chemicals called adjuvants, which increases the “stickiness” of the insecticide so it stays on the plants.

Because adjuvants have long been considered to be biologically benign, they are not subject to the same level of safety testing as other insecticidal agents. “Recently, researchers have shown that adjuvants alone or when used in combination with fungicides and insecticides are toxic to bees,” Berenbaum said.

Nurse bees are especially vulnerable to these combinations. “The health of the queens is paramount,” Berenbaum said. “If healthy queens are not produced, the colony can suffer.”

To understand how combinations affect nurse bees, the researchers tested their effect on the olfactory system of honey bees using the adjuvant Dyne-Amic, the fungicide Tilt, and the insecticide Altacor.

The researchers divided bees into four groups of ten bees and for a week exposed them to either untreated commercial pollen or to pollen that had been treated with either Dyne-Amic, or Tilt and Altacor, or all three together. The bees were then anesthetized on ice and one antenna was carefully removed from each bee. The researchers then exposed the antenna to chemical mimics of brood and alarm pheromones and recorded the antenna’s response using a technique called electroantennography.
 
With this method, Ling-Hsiu Liao, a research scientist, and Wen-Yen Wu, a graduate student, in the Berenbaum lab, found that when nurse bees had consumed pollen contaminated by the three chemicals, their antennal responses to some brood pheromones and alarm pheromones were altered. Their finding suggests that these commonly-used pesticides can interfere with honey bee communication.

How these chemicals interact and influence the bees is still unclear. “There are many possible explanations for how consuming these chemicals can affect the sensory responses of bees,” Liao said. “The antenna detects and triggers the response to olfactory signals. In this study we did not look at what other changes are triggered, particularly changes in behavior.”

In addition to parsing out the underlying molecular pathways that are affected, the researchers are also interested in testing other mixtures of commonly used pesticides as well as looking at the response of bees in other populations. They hope that their work can help beekeepers rethink how they manage and protect their colonies.

The study “Effects of pesticide-adjuvant combinations used in almond orchards on olfactory responses to social signals in honey bees (Apis mellifera)” was published in Scientific Reports and can be found at https://doi.org/10.1038/s41598-023-41818-7. The work was supported by the Almond Board of California, the USDA-AFRI National Institute of Food and Agriculture, Ohio State University, and the University of Illinois Urbana-Champaign.

 



Journal

Scientific Reports

DOI

10.1038/s41598-023-41818-7

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Effects of pesticide-adjuvant combinations used in almond orchards on olfactory responses to social signals in honey bees (Apis mellifera).

Article Publication Date

20-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.