• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Discovery reveals lipid-signaling microdomains in cells

Bioengineer by Bioengineer
December 14, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Important signaling molecules called phospholipids are active throughout cells in small compartments called condensates, rather than functioning primarily in cell membranes as previously thought, according to a study from researchers at Weill Cornell Medicine. The finding helps open a new avenue of investigation in cell biology and may also be relevant to the study of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease.

Medically important phospholipids are observed in cellular condensates.

Credit: Dr. Jason Dumelie

Important signaling molecules called phospholipids are active throughout cells in small compartments called condensates, rather than functioning primarily in cell membranes as previously thought, according to a study from researchers at Weill Cornell Medicine. The finding helps open a new avenue of investigation in cell biology and may also be relevant to the study of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease.

Condensates in cells, also called biomolecular condensates, behave like oil drops within water. They are made of proteins, and often RNA molecules, that have weakly conglomerated to form distinct globules in the cell.  These globules form compartments with chemical properties that differ from those of the surrounding, watery interior of the cell. There are many different kinds of condensates, and their apparent functions include concentrating proteins that work together to support cellular processes, and sequestering RNAs when cells are under stress. Condensates are now also seen as potential sites for the formation of abnormal protein aggregates found in neurodegenerative disorders including ALS, Alzheimer’s, Parkinson’s and Huntington’s disease.

In the study, published Nov. 16 in Nature Chemical Biology, the researchers found evidence that condensates frequently contain phospholipids along with their well known protein and RNA constituents.  These condensates often contain enzymes that act on phospholipids, suggesting a previously overlooked role for condensates as phospholipid signaling centers. The scientists also found that they could manipulate the numbers and properties of condensates by altering phospholipid levels.

“This is a basic science discovery that shows major sites of lipid signaling in cells,” said study senior author Dr. Samie Jaffrey, the Greenberg-Starr Professor in the Department of Pharmacology at Weill Cornell Medicine.

The study’s first author is Dr. Jason Dumelie, an instructor in pharmacology and a member of the Jaffrey lab at Weill Cornell Medicine. The study also included a collaboration with the laboratory of analytical chemistry expert Dr. Steven Gross, a professor of pharmacology at Weill Cornell Medicine.

Although scientists increasingly see condensates as important in health and disease, they know relatively little about condensates’ molecular constituents apart from proteins and RNAs.

In the study, Drs. Jaffrey and Dumelie and their colleagues focused on small organic molecules in cells that are often involved in biochemical processes, and are known as metabolites. The researchers made lab-dish versions of common condensates and surrounded them with an ordinary cellular mix of hundreds of metabolites. With the help of Gross lab member Dr. Qiuying Chen, an associate professor of research in pharmacology, they used a technique called mass spectrometry to catalogue metabolites that became more concentrated inside the condensates.

To their surprise, they found that condensates formed from different protein conglomerations nevertheless tended to attract similar sets of metabolites. Prominent among these metabolites were fat-related molecules called lipids, particularly phospholipids.

Phospholipids are key constituents of cell membranes that work as signaling molecules in a variety of cell processes, including immune, stress-response and cognitive functions.

“Normally if you ask scientists where phospholipids reside in cells, they’ll say in cell membranes,” Dr. Dumelie said. “But as our study shows, they are also in these condensates.”

The finding helps explain prior research, which had found that enzymes known to mediate phospholipid signaling are mysteriously present in condensates. But the implications could go well beyond basic cell biology, given the links between condensates and protein aggregation in neurodegenerative disorders.

“We found in our study that by adding phospholipids we could substantially change the properties of one of the condensates we looked at,” Dr. Dumelie said. “That suggests the possibility—which we’re investigating now—of using such lipids to alter condensates to prevent the formation of toxic protein aggregates in neurodegenerative disorders.”



Journal

Nature Chemical Biology

Article Title

Biomolecular condensates create phospholipid-enriched microenvironments

Article Publication Date

16-Nov-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

First-ever observation of the transverse Thomson effect unveiled

August 23, 2025
blank

Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

August 23, 2025

New Molecular-Merged Hypergraph Neural Network Enhances Explainable Predictions of Solvation Gibbs Free Energy

August 22, 2025

Shaping the Future of Dysphagia Diets Through 3D Printing Innovations

August 22, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

Sustainable Detection of Ofloxacin with PGCN-Modified Electrodes

Ancient Skull Sheds Light on Plotopteridae Origins

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.