• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New technology to assemble three-dimensional structures using gold nanoparticles confined in nanocapsules

Bioengineer by Bioengineer
December 12, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research group led by Assoc. Prof. Shota Kuwahara of Toho University and Assoc. Prof. Masato Kuwahara of Nagoya University has developed a new technology that enables the creation of three-dimensional structures of gold nanoparticles confined within silica nanocapsules. The assembled three-dimensional nanostructures are expected to exhibit new physical properties, and their unique optical properties can lead to the development of technologies such as high-sensitivity multi-color sensors. The results from this research were published on October 25, 2023, in Nanoscale Advances, a journal published by the Royal Society of Chemistry, UK. Further, the work was featured on the cover page of this prestigious journal.

Dr. Shota Kuwahara

Credit: Dr. Shota Kuwahara

A research group led by Assoc. Prof. Shota Kuwahara of Toho University and Assoc. Prof. Masato Kuwahara of Nagoya University has developed a new technology that enables the creation of three-dimensional structures of gold nanoparticles confined within silica nanocapsules. The assembled three-dimensional nanostructures are expected to exhibit new physical properties, and their unique optical properties can lead to the development of technologies such as high-sensitivity multi-color sensors. The results from this research were published on October 25, 2023, in Nanoscale Advances, a journal published by the Royal Society of Chemistry, UK. Further, the work was featured on the cover page of this prestigious journal.

Key Highlights:

  • The group has successfully constructed three-dimensional structures using gold nanoparticles, which are expected to have applications in bio-imaging, photocatalysis, etc., owing to their optical properties.
  • Calculations on electron energy loss spectroscopy (EELS) mapping of the three-dimensional gold nanostructures showed that different plasmon modes are generated depending on the energy of the incident electromagnetic field, and strong electromagnetic fields are generated at various positions in the structure depending on the energy of the incident light.
  • The results of this research are expected to lead to the development of technologies such as highly sensitive multi-color sensors that combine the three-dimensional structures of different types of gold nanoparticles.

When irradiated with light corresponding to localized surface plasmon resonance, which is dependent on the shape of the metallic nanoparticles, the nanoparticles can be fused by a strong electric field generated in a position-specific manner. In this study, the researchers utilized this technique to construct higher-order structures by linking gold nanoparticles together, aiming to extend their unique optical properties.

Until now, it has been difficult to construct higher-order structures composed of gold nanoparticles due to the low contact probability between gold nanoparticles and the limited contact direction.

In this research, by confining multiple gold nanoparticles in a submicron-sized silica capsule with a mesoporous silica shell, the researchers increased the contact probability between the nanoparticles and created a space where gold nanoparticles could contact each other from every direction. This is the first-ever report of the successful fabrication of a three-dimensional gold nanostructure.

Electron energy loss spectroscopy (EELS) mapping calculations were performed based on scanning transmission electron microscope (STEM) images of the three-dimensional gold nanostructures obtained by this method. The results revealed that different plasmon modes are generated depending on the energy of the incident electromagnetic field and that the position of hot spots varied depending on the plasmon mode of the three-dimensional structure.

 



Journal

Nanoscale Advances

DOI

10.1039/d3na00683b

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Three-dimensional building of anisotropic gold nanoparticles under confinement in submicron capsules

Article Publication Date

7-Nov-2023

COI Statement

Authors have no conflicts of interest to disclose.

Share12Tweet8Share2ShareShareShare2

Related Posts

Greater hydrogen production, increased ammonia and fertilizer output—all achieved with reduced energy consumption

Greater hydrogen production, increased ammonia and fertilizer output—all achieved with reduced energy consumption

August 22, 2025
NME1 Enzyme Catalyzes Its Own Oligophosphorylation

NME1 Enzyme Catalyzes Its Own Oligophosphorylation

August 22, 2025

Seamless Integration of Quantum Key Distribution with High-Speed Classical Communications in Field-Deployed Multi-Core Fibers

August 22, 2025

AI Uncovers ‘Self-Optimizing’ Mechanism in Magnesium-Based Thermoelectric Materials

August 22, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Deep Learning Radiomics Advances Tongue Cancer Staging

AI Deciphers Brain Network Differences in Tremors

Genistein Boosts TLR3-Driven Breast Cancer Defense

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.