• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

UTA, DOE lab partner to prove new atomic cooling techniques

Bioengineer by Bioengineer
November 22, 2023
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The U.S. Department of Energy has awarded associate professor of physics Benjamin Jones a $540,000 grant to initiate a new collaborative research partnership between The University of Texas at Arlington and the Pacific Northwest National Laboratory in Richland, Washington. The project aims to prove a new atomic cooling approach required for the next generation of neutrino mass research.

Ben Jones

Credit: The University of Texas at Arlington

The U.S. Department of Energy has awarded associate professor of physics Benjamin Jones a $540,000 grant to initiate a new collaborative research partnership between The University of Texas at Arlington and the Pacific Northwest National Laboratory in Richland, Washington. The project aims to prove a new atomic cooling approach required for the next generation of neutrino mass research.

Neutrinos are the most abundant particles with mass in the universe. Every time atomic nuclei come together (in the case of stars like the sun) or break apart (such as in nuclear reactors), neutrinos are produced. Even simple everyday items like bananas emit neutrinos from the natural radioactivity of potassium in the fruit.

Scientists believe that studying neutrinos can help us understand how the universe came to contain matter rather than nothing at all and how the laws of physics behave at the smallest distance scales.

In addition to having little mass, neutrinos also interact very weakly, making it difficult for scientists to pinpoint them for proper study. For this project, researchers will develop new methods of creating slow and cold atomic beams that can be trapped and used as sources for precision neutrino mass measurements.

This innovative approach will use partially cooled lithium and accommodated tritium that will serve as an input to the Cyclotron Radiation Emission Spectroscopy systems that are part of the Project 8 collaboration. Project 8 is a long-term collaboration of international scientists studying neutrino mass with funding from the U.S. Department of Energy, National Science Foundation, the PRISMA+ Cluster of Excellence at the University of Mainz in Germany and numerous universities.

“The unknown absolute value of the mass of the neutrino is one of the most glaring holes in our understanding of particle physics,” Jones said. “This project will initiate an exciting new collaboration between UTA’s emerging research capabilities and the Department of Energy as we work together to test novel atomic cooling approaches required to enable the next generation of neutrino mass research.”

Jones and his team have been working together on research at the interface of atomic, molecular, optical and nuclear physics since 2016. Since then, their primary focus has been single barium ion tagging in high-pressure xenon gas, a technique to enable future background-free neutrinoless double beta decay searchers.

“These projects are characteristic of our unique approach within the UTA Center for Advanced Detector Technologies,” Jones said. “By employing techniques from the cutting edge of a variety of disciplines, we can develop new technologies that attack difficult scientific problems in new and innovative ways. The new magnetically slowed and cooled beamline technology may also have other applications, including precision magnetometry and low temperature searches for dark matter.”



Share12Tweet8Share2ShareShareShare2

Related Posts

blank

AI Uncovers ‘Self-Optimizing’ Mechanism in Magnesium-Based Thermoelectric Materials

August 22, 2025
Astronomers Discover the Brightest Fast Radio Burst Ever Recorded

Astronomers Discover the Brightest Fast Radio Burst Ever Recorded

August 21, 2025

Atomically Thin Material Wrinkles Pave the Way for Ultra-Efficient Electronics

August 21, 2025

Exploring Dark Matter Through Exoplanet Research

August 21, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Uncovers ‘Self-Optimizing’ Mechanism in Magnesium-Based Thermoelectric Materials

Natural Disinfectants: Their Role in Prosthodontics and Oral Implantology

Brain Neurons Play Key Role in Daily Regulation of Blood Sugar Levels

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.