• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Ancient signals from the early universe

Bioengineer by Bioengineer
February 10, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Basel, Department of Physics

For the first time, theoretical physicists from the University of Basel have calculated the signal of specific gravitational wave sources that emerged fractions of a second after the Big Bang. The source of the signal is a long-lost cosmological phenomenon called "oscillon". The journal Physical Review Letters has published the results.

Although Albert Einstein had already predicted the existence of gravitational waves, their existence was not actually proven until fall 2015, when highly sensitive detectors received the waves formed during the merging of two black holes. Gravitational waves are different from all other known waves. As they travel through the universe, they shrink and stretch the space-time continuum; in other words, they distort the geometry of space itself. Although all accelerating masses emit gravitational waves, these can only be measured when the mass is extremely large, as is the case with black holes or supernovas.

Gravitational waves transport information from the Big Bang

However, gravitational waves not only provide information on major astrophysical events of this kind but also offer an insight into the formation of the universe itself. In order to learn more about this stage of the universe, Prof. Stefan Antusch and his team from the Department of Physics at the University of Basel are conducting research into what is known as the stochastic background of gravitational waves. This background consists of gravitational waves from a large number of sources that overlap with one another, together yielding a broad spectrum of frequencies. The Basel-based physicists calculate predicted frequency ranges and intensities for the waves, which can then be tested in experiments.

A highly compressed universe

Shortly after the Big Bang, the universe we see today was still very small, dense, and hot. "Picture something about the size of a football," Antusch explains. The whole universe was compressed into this very small space, and it was extremely turbulent. Modern cosmology assumes that at that time the universe was dominated by a particle known as the inflaton and its associated field.

Oscillons generate a powerful signal

The inflaton underwent intensive fluctuations, which had special properties. They formed clumps, for example, causing them to oscillate in localized regions of space. These regions are referred to as oscillons and can be imagined as standing waves. "Although the oscillons have long since ceased to exist, the gravitational waves they emitted are omnipresent – and we can use them to look further into the past than ever before," says Antusch.

Using numerical simulations, the theoretical physicist and his team were able to calculate the shape of the oscillon's signal, which was emitted just fractions of a second after the Big Bang. It appears as a pronounced peak in the otherwise rather broad spectrum of gravitational waves. "We would not have thought before our calculations that oscillons could produce such a strong signal at a specific frequency," Antusch explains. Now, in a second step, experimental physicists must actually prove the signal's existence using detectors.

###

Media Contact

Dr. Stefan Antusch
[email protected]
41-612-073-918
@UniBasel_en

http://www.unibas.ch/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

How Placental Research Could Revolutionize Our Understanding of Autism and Human Brain Evolution

September 16, 2025
blank

Pueraria lobata and Puerarin Boost Dopamine Activity

September 16, 2025

Study Identifies Population Aging as Key Driver of Musculoskeletal Disorders

September 16, 2025

Charting the Universe: Faster Mapping with Unmatched Precision

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How Placental Research Could Revolutionize Our Understanding of Autism and Human Brain Evolution

Pueraria lobata and Puerarin Boost Dopamine Activity

Study Identifies Population Aging as Key Driver of Musculoskeletal Disorders

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.