• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, February 8, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Mitochondrial lipids as potential targets in early onset Parkinson’s disease

Bioengineer by Bioengineer
February 10, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of researchers led by Patrik Verstreken (VIB-KU Leuven) have identified an underlying mechanism in early onset Parkinson's. Using flies, mice and patient cells, the team focused on cardiolipin, a fat unique to cells' mitochondria, organelles that produce energy. They demonstrated that reducing the effects of the protein FASN influences the mitochondria, leading to increased cardiolipin levels and reduced Parkinson's symptoms. These results could pave the way to therapies for Parkinson's disease that target lipids. The team's research was published in the scientific magazine Journal of Cell Biology.

An estimated 10 million people are currently affected by Parkinson's disease worldwide. A small percentage gets confronted with the disease before the age of 40. While the affection's causes are not yet known, scientists believe that they consist of both genetic and environmental factors. In genetic Parkinson's disease, a mutation in the PINK1 gene causes changes in neurons' mitochondria, leading to the degeneration of these neurons.

Existing oncological applications

In this study, prof. Verstreken and his team, consisting of collaborators in Belgium, Germany and Portugal, observed that a protein responsible for lipid creation in cells, FASN, bypasses the genetic defect in mitochondria.

Prof. Patrik Verstreken (VIB-KU Leuven): "Several drugs that block FASN already exist, as this protein is also important to cancer research and treatment. Many of them have already been used in clinical trials. Thanks to this research, we can now test them in the context of Parkinson's disease."

Unexpected effects of FASN protein

In the course of their research, the researchers encountered a surprising observation. Using fly, mouse and human cell models, they saw that FASN has a direct effect on mitochondria, which have their own separate genomes and operate as energy producing entities within their cells.

Prof. Patrik Verstreken (VIB-KU Leuven): "The PINK1 gene encodes the PINK1 protein, and mutations in it lead to lower levels of cardiolipin in mitochondria. It was unexpected to see that blocking FASN – which is not localized to the mitochondria – actually sidesteps the mitochondrial effects of the PINK1 mutation. As a result, blocking FASN increases the amounts of a specific type of lipids in mitochondria, reducing the degradation of neurons."

Translating insights into therapies

Prof. Verstreken has already identified several targets for future research projects seeking greater insights into the link between the amounts of specific lipids in neurons and Parkinson's disease.

Prof. Patrik Verstreken (VIB-KU Leuven): "Some questions need to be answered before new therapies can be developed, such as 'is there a link between early onset Parkinson's prevalence and progression with lipid content?' And while we successfully demonstrated that cardiolipin can improve the function of mitochondria in flies, mouse models and in human cells, we need to explore its effects in actual patients."

###

Media Contact

Sooike Stoops
[email protected]
32-924-46611
@VIBLifeSciences

http://www.vib.be

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Group Therapy Boosts Recovery in Elderly Depression

February 8, 2026

Evaluating Biosimilar Trastuzumab for Breast Cancer in Thailand

February 8, 2026

Decoding Phantom Limb Movements via Intraneural Signals

February 8, 2026

Attitudes Toward Aging Impact Early Nursing Home Quality

February 8, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13
  • Mapping Tertiary Lymphoid Structures for Kidney Cancer Biomarkers

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Group Therapy Boosts Recovery in Elderly Depression

Evaluating Biosimilar Trastuzumab for Breast Cancer in Thailand

Decoding Phantom Limb Movements via Intraneural Signals

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 74 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.