• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

CSU develops antibacterial material for use with internal medical devices such as hip replacements or pacemakers

Bioengineer by Bioengineer
November 16, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at Colorado State University and the University of St. Andrews in Scotland have developed an effective and flexible antimicrobial material that could be used to coat medical devices placed inside the body.

Membrane films containing MOFs

Credit: Colorado State University Department of Chemistry

Researchers at Colorado State University and the University of St. Andrews in Scotland have developed an effective and flexible antimicrobial material that could be used to coat medical devices placed inside the body.

The work combines previous research from both universities into metal-organic frameworks – three-dimensional crystalline materials made of metals and linkers that are porous and remain stable in water. Working together, the teams combined their two frameworks into a single thin- film membrane to slowly release nitric oxide. A well-known antimicrobial agent that occurs naturally in the body, nitric oxide not only kills bacteria and fungus on contact but continues to do so over an extended period of time. 

The study was published in the November issue of ACS Applied Materials & Interfaces.

Chemistry Professor Melissa Reynolds, who led the work at CSU, said that coating implanted devices with the material may provide a non-drug-based route to preventing infections in common surgical procedures such as hip replacements or shunts that are in constant contact with skin. About 1% of patients undergoing hip or knee replacements may develop an infection after the operation according to the American Academy of Orthopaedic Surgeons.

“Non-elective surgery is a key area for this work because they are increasingly common and many people getting them have underlying medical issues that increase the chances for infection. Additionally, many patients may not realize they have developed an infection from the surgery until much later,” she said. “Using this material could help keep those devices running smoothly inside the body and prevent the need for additional surgeries.”

Many medical devices currently use silver coatings to prevent infection. However, there is a potential for high doses of that element to leach into the body over time. Additionally, silver cannot be used for some types of implanted devices that are load-bearing or require support. Reynolds also noted that while drugs can treat infections, they have a limited life span of effectiveness and may bring side effects.

To develop the thin-film material, the team studied three membranes with different combinations of the metal-organic frameworks using a new cryogenic imaging technique. Reynolds said that helped the team identify the best ratios and methods to release the nitric oxide.

“The preliminary data shows the material is effective at eliminating common bacteria such as staph or E. coli,” she said. “We also found that a very small amount of this material by weight percentage is still very effective at killing bacteria. That is promising for future applications and for feasibility in use outside of a university test setting.”

Reynolds said the team will continue to research the delivery methods and how to take the material from its current thin-film form to something that can be applied across devices like pacemakers.

“Any implantable device is a candidate for this technology, and we think it will actually be inexpensive to manufacture,” she said. “We haven’t found any limitations yet and are looking forward to working with companies to develop this approach.”
 



Journal

ACS Applied Materials & Interfaces

DOI

10.1021/acsami.3c11283

Article Title

Mixed Metal–Organic Framework Mixed-Matrix Membranes: Insights into Simultaneous Moisture-Triggered and Catalytic Delivery of Nitric Oxide using Cryo-scanning Electron Microscopy

Article Publication Date

11-Oct-2023

COI Statement

The authors declare no competing financial interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025
SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025

Expanding Azole Chemistry with Precise N-Alkylation

August 26, 2025

Advancing Green Technology with More Efficient and Reliable SiC Devices

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

METTL3-Driven m6A Boosts Sorafenib’s Antitumor Effects

Blood and Fluid Signatures Predict IVF Embryo Success

Enhancing 3D-Printed Biphasic Scaffolds with Hourglass Design

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.