• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

UMass Lowell researchers are developing pancreas-like tissue to help people with diabetes

Bioengineer by Bioengineer
November 15, 2023
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Media contacts:
Emily Gowdey-Backus, director of media relations, [email protected]
Nancy Cicco, assistant director of media relations, [email protected]

UMass Lowell research led by Gulden Camci-Unal

Credit: UMass Lowell courtesy photo

Media contacts:
Emily Gowdey-Backus, director of media relations, [email protected]
Nancy Cicco, assistant director of media relations, [email protected]

UMass Lowell researchers are developing pancreas-like tissue to help people with diabetes
Collaborative project supported by the National Science Foundation

 

More than 37 million people in the country have diabetes and 1.4 million more are diagnosed with the disease each year, according to the American Diabetes Association.

 

A UMass Lowell scientist is hoping to improve the quality of life for those with diabetes using innovative biomaterials and engineered cells and tissues, including an insulin-producing, bioengineered pancreas-like tissue.

 

“Individuals with Type 1 diabetes, and more than 30% of those with Type 2 diabetes, depend on daily injections of insulin,” said Gulden Camci-Unal, an associate professor of chemical engineering, who is leading the research. “However, maintaining optimal blood-glucose levels remains a challenge and does not prevent severe long-term complications.”

 

Insulin, a hormone produced by the pancreas, delivers sugar in the blood to an individual’s cells, giving them energy. Diabetes is a chronic illness in which the pancreas does not produce enough insulin, or the body does not respond properly to the insulin it does produce. As a result, the amount of sugar, or glucose, in the blood of diabetes patients remains high, which can lead to serious and lifelong health complications.

 

The research and development of these materials by Camci-Unal is supported by a $242,000 grant from the National Science Foundation.

 

In the three-year project, Camci-Unal will create miniature 3D scaffolds that support the growth of insulin-producing pancreatic cells in a laboratory. The ultimate goal is to implant these cell-laden scaffolds into patients who need help managing their glucose levels. Joining her in the effort are Gokalp Kurtoglu, a UMass Lowell biomedical engineering and biotechnology doctoral student, and Emmanuel Tzanakakis, a chemical and biological engineering professor at Tufts University.

 

“My lab will be taking the lead in developing the appropriate synthetic biomaterials and facilitating the formation of blood vessels inside the scaffolds,” Camci-Unal said.

 

The researchers will use hydrolyzed collagen-based hydrogels to design and construct the scaffolds and encapsulate the engineered cells to protect them from the body’s immune system. 

 

The team will also incorporate oxygen-generating compounds as well as cells from the lining of blood vessels into the scaffolds to help promote the formation of the patients’ vascular network. The scaffolds themselves are harmless to other cells in the body and are highly porous and biodegradable, according to Camci-Unal. They could also, one day, serve additional purposes.

 

“In addition to diabetes, our scaffolds have the potential for applications in engineering various other tissues such as muscle, liver and neural tissues,” she said.

 



Share12Tweet8Share2ShareShareShare2

Related Posts

Integrated Pipeline for Discovering Malaria Transmission Blockers

Integrated Pipeline for Discovering Malaria Transmission Blockers

August 1, 2025
Ongoing Use of Nasogastric Tubes Following Esophageal Cancer Surgery Receives Backing

Ongoing Use of Nasogastric Tubes Following Esophageal Cancer Surgery Receives Backing

July 31, 2025

RIPK1 S213E Mutation Blocks Cell Death Interactions

July 31, 2025

Biomarker Panels Boost Atrial Fibrillation Risk Insights

July 31, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Integrated Pipeline for Discovering Malaria Transmission Blockers

Proteogenomic Study of Healthy vs. Cancerous Prostate Tissues Leveraging SILAC and Mutation Databases

Here’s a rewritten version of the headline for a science magazine post: “Could Desert Dust Hold the Key to Freezing Clouds?”

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.