• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Brazilian peppertree packs power to knock out antibiotic-resistant bacteria

Bioengineer by Bioengineer
February 10, 2017
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Emory University

The red berries of the Brazilian peppertree — a weedy, invasive species common in Florida — contain an extract with the power to disarm dangerous antibiotic-resistant staph bacteria, scientists at Emory University have discovered.

The journal Scientific Reports is publishing the finding, made in the lab of Cassandra Quave, an assistant professor in Emory's Center for the Study of Human Health and in the School of Medicine's Department of Dermatology.

"Traditional healers in the Amazon have used the Brazilian peppertree for hundreds of years to treat infections of the skin and soft tissues," Quave says. "We pulled apart the chemical ingredients of the berries and systematically tested them against disease-causing bacteria to uncover a medicinal mechanism of this plant."

The researchers showed that a refined, flavone-rich composition extracted from the berries inhibits formation of skin lesions in mice infected with methicillin-resistant Staphylococcus auereus (MRSA). The compound works not by killing the MRSA bacteria, but by repressing a gene that allows the bacteria cells to communicate with one another. Blocking that communication prevents the cells from taking collective action, a mechanism known as quorum quenching.

"It essentially disarms the MRSA bacteria, preventing it from excreting the toxins it uses as weapons to damage tissues," Quave says. "The body's normal immune system then stands a better chance of healing a wound."

The discovery may hold potential for new ways to treat and prevent antibiotic-resistant infections, a growing international problem. Antibiotic-resistant infections annually cause at least two million illnesses and 23,000 deaths in the United States, according to the Centers for Disease Control and Prevention. The United Nations last year called antibiotic-resistant infections a "fundamental threat" to global health and safety, citing estimates that they cause at least 700,000 deaths each year worldwide, with the potential to grow to 10 million deaths annually by 2050.

Blasting deadly bacteria with drugs designed to kill them is helping to fuel the problem of antibiotic resistance. Some of the stronger bacteria may survive these drug onslaughts and proliferate, passing on their genes to offspring and leading to the evolution of deadly "super bugs."

In contrast, the Brazilian peppertree extract works by simply disrupting the signaling of MRSA bacteria without killing it. The researchers also found that the extract does not harm the skin tissues of mice, or the normal, healthy bacteria found on skin.

"In some cases, you need to go in heavily with antibiotics to treat a patient," Quave says. "But instead of always setting a bomb off to kill an infection, there are situations where using an anti-virulence method may be just as effective, while also helping to restore balance to the health of a patient. More research is needed to better understand how we can best leverage anti-virulence therapeutics to improve patient outcomes."

Quave, a leader in the field of medical ethnobotany and a member of the Emory Antibiotic Resistance Center, studies how indigenous people incorporate plants in healing practices to uncover promising candidates for new drugs.

The Brazilian peppertree (Schinus terebinthifolia) is native to South America but thrives in subtropical climates. It is abundant in much of Florida, and has also crept into southern areas of Alabama, Georgia, Texas and California. Sometimes called the Florida holly or broad leaf peppertree, the woody plant forms dense thickets that crowd out native species.

"The Brazilian peppertree is not some exotic and rare plant found only on a remote mountaintop somewhere," Quave says. "It's a weed, and the bane of many a landowner in Florida."

From an ecological standpoint, it makes sense that weeds would have interesting chemistry, Quave adds. "Persistent, weedy plants tend to have a chemical advantage in their ecosystems, which help may protect them from diseases so they can more easily spread in a new environment."

###

The studies co-authors include Amelia Muhs and James Lyles (Emory Center for the Study of Human Health); Kate Nelson (Emory School of Medicine); and Corey Parlet, Jeffery Kavanaugh and Alexander Horswill (University of Iowa). The laboratory experiments were conducted in collaboration between the Quave and Horswill labs with funding from the National Center for Complementary and Integrative Health, National Institutes of Health.

The Quave lab is now doing additional research to confirm the safest and most effective means of using the Brazilian peppertree extract. The next step would be pre-clinical trials to test its medicinal benefits. "If the pre-clinical trials are successful, we will apply for an application to pursue clinical trials, under the Food and Drug Administration's botanical drug pathway," Quave says.

The Brazilian peppertree finding follows another discovery made by the Quave lab in 2015: The leaves of the European chestnut tree also contain ingredients with the power to disarm staph bacteria without increasing its drug resistance. While both the Brazilian peppertree and chestnut tree extracts disrupted the signaling needed for quorum quenching, the two extracts are made up of different chemical compounds.

Media Contact

Carol Clark
[email protected]
@emoryhealthsci

http://whsc.emory.edu/home/news/index.html

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Shifts in Infective Endocarditis Demographics: 2012-2021

September 16, 2025

Assessing Disability: WHO vs. Daily Living Scales

September 16, 2025

Creating a Sulfur Vacancy Redox Disruptor for Innovative Therapies Targeting Cuproptosis, Ferroptosis, and Apoptosis through Photothermoelectric and Cascade Catalytic Mechanisms

September 16, 2025

Practical Skin Care Tips for 22–24 Week Infants

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Shifts in Infective Endocarditis Demographics: 2012-2021

Assessing Disability: WHO vs. Daily Living Scales

Creating a Sulfur Vacancy Redox Disruptor for Innovative Therapies Targeting Cuproptosis, Ferroptosis, and Apoptosis through Photothermoelectric and Cascade Catalytic Mechanisms

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.