• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

One step closer to personalized antibiotic treatment

Bioengineer by Bioengineer
February 10, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Taking antibiotics to fight an infection won't necessarily solve your problems. Often, natural occurring bacteria in the gut harbor several resistance genes. This means that the gut bacteria may exchange genes with the infectious bacteria, resulting in antibiotic resistance. Therefore, knowing the resistome — i.e. the pool of resistance genes present in the gut microbiota — can improve treatment immensely.

Now researchers from The Novo Nordisk Foundation Center for Biosustainability — DTU Biosustain — at Technical University of Denmark have developed a super-fast cheap method called poreFUME that can shed light on the pool of resistance genes in the gut.

"With this method, you will get an overview of the resistome in 1-2 days, and, hence, be able to start the treatment of the infection sooner and with better results than before," says Eric van der Helm, Postdoc at The Novo Nordisk Foundation Center for Biosustainability — DTU Biosustain — at Technical University of Denmark.

The research has recently been published in the journal Nucleic Acid Research.

The poreFUME method using nanopore sequencing is very rapid compared to current methods, because it doesn't require growth of the faecal bacteria, which takes time and can be difficult. Also, the data from the device is streamed in real time, so the user doesn't need to wait until the end of a 'run' to access information about the experiment.

Today, getting resistome-data from a patient takes weeks. In the meantime, the resistome profile might change dramatically, and the patient will suffer from failing health.

Every year 700,000 people die of resistant infections, in particular hospitalized patients; and the problem seems to be growing. For many patients, a quick assessment of their personal pool of resistance genes in their feces can be lifesaving.

"Our research shows, that this method provides a promising alternative to other sequencing methods and that it can be used to rapidly profile the resistome of microbial communities in for instance the gut. We are quite convinced, that rapid resistome profiling could lead to personalized antibiotic treatment in high risk patients," says Professor and co-author Morten Sommer from DTU Biosustain.

The study was carried out as a collaboration between DTU and co-author Dr. Willem van Schaik from the University Medical Center Utrecht, who provided access to an intensive care unit patient (ICU).

In this study, five feces samples from the ICU patient were assessed. After lung transplantation surgery, due to Chronic obstructive pulmonary disease (COPD), the patient was treated with four different kinds of antibiotics to prevent and fight infections. Samples were collected both upon admission to intensive care unit, during stay and several months after hospitalisation.

The results showed that the poreFUME method was 97% accurate, when compared to standardized resistome profiling methods. This percentage is sufficient when measuring the resistome.

Furthermore, the poreFUME method is much cheaper than current methods, primarily due to the low cost of the so-called MinION; a small handheld DNA-sequencing device, which scientists can start to use for 1,000 Dollars. In comparison, conventional so-called next generation sequencing devices are priced at between 50,000 Dollars and 10 million Dollars.

"If hospitals can purchase equipment for resistome profiling cheaper than today, it opens up for better profiling of more patients and hopefully fewer cases of bacterial resistance," says co-author and Researcher Lejla Imamovic from DTU Biosustain.

###

Media Contact

Morten O. A. Sommer
[email protected]
@DTUtweet

http://www.dtu.dk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Shifts in Infective Endocarditis Demographics: 2012-2021

September 16, 2025

Assessing Disability: WHO vs. Daily Living Scales

September 16, 2025

Creating a Sulfur Vacancy Redox Disruptor for Innovative Therapies Targeting Cuproptosis, Ferroptosis, and Apoptosis through Photothermoelectric and Cascade Catalytic Mechanisms

September 16, 2025

Practical Skin Care Tips for 22–24 Week Infants

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Shifts in Infective Endocarditis Demographics: 2012-2021

Assessing Disability: WHO vs. Daily Living Scales

Creating a Sulfur Vacancy Redox Disruptor for Innovative Therapies Targeting Cuproptosis, Ferroptosis, and Apoptosis through Photothermoelectric and Cascade Catalytic Mechanisms

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.