• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New twist on AI makes the most of sparse sensor data

Bioengineer by Bioengineer
November 14, 2023
in Health
Reading Time: 3 mins read
0
Drone and AI
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

LOS ALAMOS, N.M., Nov. 14, 2023 — An innovative approach to artificial intelligence (AI) enables reconstructing a broad field of data, such as overall ocean temperature, from a small number of field-deployable sensors using low-powered “edge” computing, with broad applications across industry, science and medicine.

Drone and AI

Credit: Los Alamos National Laboratory

LOS ALAMOS, N.M., Nov. 14, 2023 — An innovative approach to artificial intelligence (AI) enables reconstructing a broad field of data, such as overall ocean temperature, from a small number of field-deployable sensors using low-powered “edge” computing, with broad applications across industry, science and medicine.

“We developed a neural network that allows us to represent a large system in a very compact way,” said Javier Santos, a Los Alamos National Laboratory researcher who applies computational science to geophysical problems. “That compactness means it requires fewer computing resources compared to state-of-the-art convolutional neural network architectures, making it well-suited to field deployment on drones, sensor arrays and other edge-computing applications that put computation closer to its end use.”

Novel AI approach boosts computing efficiency

Santos is first author of a paper published by a team of Los Alamos researchers in Nature Machine Intelligence on the novel AI technique, which they dubbed Senseiver. The work, which builds on an AI model called Perceiver IO developed by Google, applies the techniques of natural-language models such as ChatGPT to the problem of reconstructing information about a broad area — such as the ocean — from relatively few measurements.

The team realized the model would have broad application because of its efficiency. “Using fewer parameters and less memory requires fewer central processing unit cycles on the computer, so it runs faster on smaller computers,” said Dan O’Malley, a coauthor of the paper and Los Alamos researcher who applies machine learning to geoscience problems.

In a first in the published literature, Santos and his Los Alamos colleagues validated the model by demonstrating its effectiveness on real-world sets of sparse data — meaning information taken from sensors that cover only a tiny portion of the field of interest — and on complex data sets of three-dimensional fluids.

In a demonstration of the real-world utility of the Senseiver, the team applied the model to a National Oceanic and Atmospheric Administration sea-surface-temperature dataset. The model was able to integrate a multitude of measurements taken over decades from satellites and sensors on ships. From these sparse point measurements, the model forecast temperatures across the entire body of the ocean, which provides information useful to global climate models.

Bringing AI to drones and sensor networks

The Senseiver is well-suited to a variety of projects and research areas of interest to Los Alamos.

“Los Alamos has a wide range of remote sensing capabilities, but it’s not easy to use AI because models are too big and don’t fit on devices in the field, which leads us to edge computing,” said Hari Viswanathan, Los Alamos National Laboratory Fellow, environmental scientist and coauthor of the paper about the Senseiver. “Our work brings the benefits of AI to drones, networks of field-based sensors and other applications currently beyond the reach of cutting-edge AI technology.”

The AI model will be particularly useful in the Lab’s work identifying and characterizing orphaned wells. The Lab leads the Department of Energy-funded Consortium Advancing Technology for Assessment of Lost Oil & Gas Wells (CATALOG), a federal program tasked with locating and characterizing undocumented orphaned wells and measuring their methane emissions. Viswanathan is the lead scientist of CATALOG.  

The approach offers improved capabilities for large, practical applications such as self-driving cars, remote modeling of assets in oil and gas, medical monitoring of patients, cloud gaming, content delivery and contaminant tracing.

The paper: “Development of the Senseiver for efficient field reconstruction from sparse observations.” Nature Machine Intelligence. DOI: 10.1038/s42256-023-00746-x       

The funding: This work was funded by the Laboratory Directed Research and Development program at Los Alamos National Laboratory; the Department of Energy, Office of Science, Office of Basic Energy Sciences, Geoscience Research; and the DOE Office of Science, Basic Energy Sciences, Fossil Energy and Carbon Management, Undocumented Orphan Wells program.

-30-

 

LA-UR-23-32795



Journal

Nature Machine Intelligence

DOI

10.1038/s42256-023-00746-x

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Development of the Senseiver for efficient field reconstruction from sparse observations.

Article Publication Date

6-Nov-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.