• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A revolution in crystal structure prediction of pharmaceutical drugs

Bioengineer by Bioengineer
November 10, 2023
in Chemistry
Reading Time: 3 mins read
0
Schematic of the free energy method introduced in this work
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Physical properties (stability, solubility, etc.), critical to the performance of pharmaceutical and functional materials, are known to strongly depend on the solid-state form and environmental factors, such as temperature and relative humidity. Recognising that late appearing, more stable forms can lead to disappearing polymorphs and potentially market withdrawal of a life-saving medicine, the pharmaceutical industry has heavily invested in solid form screening platforms.

Schematic of the free energy method introduced in this work

Credit: Firaha, D., Liu, Y.M., van de Streek, J. et al.

Physical properties (stability, solubility, etc.), critical to the performance of pharmaceutical and functional materials, are known to strongly depend on the solid-state form and environmental factors, such as temperature and relative humidity. Recognising that late appearing, more stable forms can lead to disappearing polymorphs and potentially market withdrawal of a life-saving medicine, the pharmaceutical industry has heavily invested in solid form screening platforms.

Quantitatively measuring the free energy differences between crystalline forms is no small challenge. Metastable crystal forms can be difficult to prepare in pure form and they are frequently susceptible to converting to more stable forms. Thus, having the ability to computationally model free energies means that the risks posed by physical instability can be understood and mitigated for all systems, including those that are experimentally intractable. The lack of reliable experimental benchmark data has been a major bottleneck in developing computational methods for accurately predicting solid-solid free energy differences. Reports in the literature are sparse and much of the experimental data on free energy determinations for molecules of pharmaceutical interest is simply not in the public domain.

To overcome this challenge, experts in academia and industry have compiled the first ever reliable experimental benchmark of solid-solid free energy differences for chemically diverse, industrially relevant systems. They then predicted these free energy differences using several methods pioneered by the group of Prof. Alexandre Tkatchenko within the Department of Physics and Materials Science at the University of Luxembourg, and further improved by Dr. Marcus Neumann and his team of researchers at Avant-garde Materials Simulation. Without using any empirical input, these calculations leveraging high performance computing (HPC) were able to predict and explain data from seven pharmaceutical companies with surprising accuracy. The potential future implications of this work are manifold, and this latest development is just one of many potential application of quantum mechanical calculations in the pharmaceutical industry.

“I am thrilled to see how computational methods developed in my academic group have been quickly adopted to reliably predict the energetics of drug crystal forms in the pharmaceutical industry in a matter of years, breaking the traditional barrier between research and industrial innovation”, remarks Prof. Tkatchenko.

“We owe a fair part of our success to the visionaries among our customers who have enabled us to create an industrial working environment with an academic touch that promotes creativity based on core values such as honesty, integrity, perseverance, team-spirit and genuine care for people and the environment”, points out Dr Marcus Neuman, founder and CEO of AMS.

“Building links between fundamental science, high performance computing, and major industry players in order to make a lasting impact for the future of health is no small feat”, said Prof. Jens Kreisel, Rector of the University of Luxembourg. “We take very seriously our mission of nurturing an ecosystem where researchers can drive societal change for good.”



Journal

Nature

DOI

10.1038/s41586-023-06587-3

Article Title

Predicting crystal form stability under real-world conditions

Article Publication Date

8-Nov-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.